--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-mnli-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/MNLI type: tmnam20/VieGLUE config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.806346623270952 --- # bert-base-multilingual-cased-mnli-100 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5343 - Accuracy: 0.8063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.62 | 0.41 | 5000 | 0.6193 | 0.7459 | | 0.5923 | 0.81 | 10000 | 0.5911 | 0.7610 | | 0.5136 | 1.22 | 15000 | 0.5670 | 0.7808 | | 0.4927 | 1.63 | 20000 | 0.5558 | 0.7852 | | 0.4425 | 2.04 | 25000 | 0.5809 | 0.7844 | | 0.4301 | 2.44 | 30000 | 0.5546 | 0.7940 | | 0.4017 | 2.85 | 35000 | 0.5565 | 0.7963 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0