--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-qnli-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QNLI type: tmnam20/VieGLUE config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.885227896760022 --- # bert-base-multilingual-cased-qnli-1 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3278 - Accuracy: 0.8852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3938 | 0.15 | 500 | 0.3494 | 0.8495 | | 0.3712 | 0.31 | 1000 | 0.3266 | 0.8570 | | 0.3837 | 0.46 | 1500 | 0.3174 | 0.8655 | | 0.3466 | 0.61 | 2000 | 0.2957 | 0.8785 | | 0.3084 | 0.76 | 2500 | 0.3093 | 0.8715 | | 0.322 | 0.92 | 3000 | 0.2950 | 0.8731 | | 0.273 | 1.07 | 3500 | 0.2872 | 0.8834 | | 0.2628 | 1.22 | 4000 | 0.3110 | 0.8794 | | 0.2732 | 1.37 | 4500 | 0.2910 | 0.8797 | | 0.2592 | 1.53 | 5000 | 0.2855 | 0.8849 | | 0.241 | 1.68 | 5500 | 0.2974 | 0.8861 | | 0.2256 | 1.83 | 6000 | 0.2914 | 0.8850 | | 0.2402 | 1.99 | 6500 | 0.2759 | 0.8883 | | 0.1958 | 2.14 | 7000 | 0.3080 | 0.8880 | | 0.1684 | 2.29 | 7500 | 0.3190 | 0.8847 | | 0.1472 | 2.44 | 8000 | 0.3305 | 0.8871 | | 0.1601 | 2.6 | 8500 | 0.3298 | 0.8836 | | 0.1857 | 2.75 | 9000 | 0.3274 | 0.8847 | | 0.1667 | 2.9 | 9500 | 0.3256 | 0.8841 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0