--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-qnli-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QNLI type: tmnam20/VieGLUE config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.8885227896760022 --- # bert-base-multilingual-cased-qnli-100 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3284 - Accuracy: 0.8885 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4041 | 0.15 | 500 | 0.3611 | 0.8488 | | 0.3784 | 0.31 | 1000 | 0.3232 | 0.8603 | | 0.364 | 0.46 | 1500 | 0.3128 | 0.8642 | | 0.364 | 0.61 | 2000 | 0.3020 | 0.8702 | | 0.3236 | 0.76 | 2500 | 0.2960 | 0.8768 | | 0.3475 | 0.92 | 3000 | 0.2895 | 0.8816 | | 0.252 | 1.07 | 3500 | 0.3019 | 0.8812 | | 0.261 | 1.22 | 4000 | 0.2783 | 0.8893 | | 0.2718 | 1.37 | 4500 | 0.2880 | 0.8832 | | 0.2407 | 1.53 | 5000 | 0.3017 | 0.8812 | | 0.254 | 1.68 | 5500 | 0.2775 | 0.8827 | | 0.2611 | 1.83 | 6000 | 0.2837 | 0.8812 | | 0.257 | 1.99 | 6500 | 0.2816 | 0.8852 | | 0.1645 | 2.14 | 7000 | 0.3323 | 0.8845 | | 0.1679 | 2.29 | 7500 | 0.3568 | 0.8825 | | 0.1643 | 2.44 | 8000 | 0.3203 | 0.8889 | | 0.1662 | 2.6 | 8500 | 0.3240 | 0.8878 | | 0.1558 | 2.75 | 9000 | 0.3302 | 0.8856 | | 0.1614 | 2.9 | 9500 | 0.3299 | 0.8872 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0