--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy - f1 model-index: - name: bert-base-multilingual-cased-qqp-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QQP type: tmnam20/VieGLUE config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8912441256492704 - name: F1 type: f1 value: 0.8515680383485805 --- # bert-base-multilingual-cased-qqp-1 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2978 - Accuracy: 0.8912 - F1: 0.8516 - Combined Score: 0.8714 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3241 | 0.44 | 5000 | 0.3155 | 0.8585 | 0.8090 | 0.8337 | | 0.3239 | 0.88 | 10000 | 0.2986 | 0.8655 | 0.8091 | 0.8373 | | 0.2479 | 1.32 | 15000 | 0.2984 | 0.8762 | 0.8301 | 0.8532 | | 0.2461 | 1.76 | 20000 | 0.2838 | 0.8818 | 0.8387 | 0.8603 | | 0.1919 | 2.2 | 25000 | 0.2947 | 0.8887 | 0.8491 | 0.8689 | | 0.1965 | 2.64 | 30000 | 0.2967 | 0.8896 | 0.8489 | 0.8692 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0