--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy - f1 model-index: - name: bert-base-multilingual-cased-qqp-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QQP type: tmnam20/VieGLUE config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.8905515706158793 - name: F1 type: f1 value: 0.8513354611120443 --- # bert-base-multilingual-cased-qqp-100 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.2983 - Accuracy: 0.8906 - F1: 0.8513 - Combined Score: 0.8709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3417 | 0.44 | 5000 | 0.3198 | 0.8578 | 0.8057 | 0.8317 | | 0.2998 | 0.88 | 10000 | 0.2908 | 0.8724 | 0.8252 | 0.8488 | | 0.2629 | 1.32 | 15000 | 0.2970 | 0.8763 | 0.8300 | 0.8532 | | 0.2269 | 1.76 | 20000 | 0.2874 | 0.8845 | 0.8405 | 0.8625 | | 0.1933 | 2.2 | 25000 | 0.2962 | 0.8867 | 0.8470 | 0.8669 | | 0.1752 | 2.64 | 30000 | 0.3174 | 0.8895 | 0.8497 | 0.8696 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0