--- language: - en license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: bert-base-multilingual-cased-sst2-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/SST2 type: tmnam20/VieGLUE config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8818807339449541 --- # bert-base-multilingual-cased-sst2-100 This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4327 - Accuracy: 0.8819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3948 | 0.24 | 500 | 0.4225 | 0.8257 | | 0.3381 | 0.48 | 1000 | 0.3634 | 0.8567 | | 0.2941 | 0.71 | 1500 | 0.3880 | 0.8475 | | 0.2828 | 0.95 | 2000 | 0.3587 | 0.8589 | | 0.2157 | 1.19 | 2500 | 0.3510 | 0.8761 | | 0.2367 | 1.43 | 3000 | 0.4677 | 0.8440 | | 0.2072 | 1.66 | 3500 | 0.3567 | 0.8773 | | 0.1904 | 1.9 | 4000 | 0.4433 | 0.8624 | | 0.1401 | 2.14 | 4500 | 0.4476 | 0.875 | | 0.1452 | 2.38 | 5000 | 0.4352 | 0.8624 | | 0.1531 | 2.61 | 5500 | 0.4456 | 0.8647 | | 0.1359 | 2.85 | 6000 | 0.4398 | 0.8761 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0