--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-mnli-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/MNLI type: tmnam20/VieGLUE config: mnli split: validation_matched args: mnli metrics: - name: Accuracy type: accuracy value: 0.8430634662327096 --- # mdeberta-v3-base-mnli-10 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4642 - Accuracy: 0.8431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5294 | 0.41 | 5000 | 0.4986 | 0.8037 | | 0.4856 | 0.81 | 10000 | 0.4593 | 0.8250 | | 0.3976 | 1.22 | 15000 | 0.4776 | 0.8271 | | 0.4154 | 1.63 | 20000 | 0.4680 | 0.8222 | | 0.2933 | 2.04 | 25000 | 0.5138 | 0.8304 | | 0.3186 | 2.44 | 30000 | 0.4813 | 0.8320 | | 0.3196 | 2.85 | 35000 | 0.4795 | 0.8331 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0