--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-qnli-1 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QNLI type: tmnam20/VieGLUE config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.8998718652754897 --- # mdeberta-v3-base-qnli-1 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2782 - Accuracy: 0.8999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 1 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3768 | 0.15 | 500 | 0.3291 | 0.8596 | | 0.3506 | 0.31 | 1000 | 0.2961 | 0.8752 | | 0.3417 | 0.46 | 1500 | 0.2917 | 0.8808 | | 0.3319 | 0.61 | 2000 | 0.2742 | 0.8871 | | 0.3126 | 0.76 | 2500 | 0.2686 | 0.8913 | | 0.3073 | 0.92 | 3000 | 0.2639 | 0.8916 | | 0.2867 | 1.07 | 3500 | 0.2557 | 0.8958 | | 0.2313 | 1.22 | 4000 | 0.2937 | 0.8880 | | 0.2364 | 1.37 | 4500 | 0.2585 | 0.8971 | | 0.2533 | 1.53 | 5000 | 0.2545 | 0.8938 | | 0.2333 | 1.68 | 5500 | 0.2629 | 0.8955 | | 0.225 | 1.83 | 6000 | 0.2532 | 0.9002 | | 0.2313 | 1.99 | 6500 | 0.2520 | 0.8988 | | 0.1793 | 2.14 | 7000 | 0.2819 | 0.8953 | | 0.1639 | 2.29 | 7500 | 0.2809 | 0.8964 | | 0.1645 | 2.44 | 8000 | 0.2778 | 0.8990 | | 0.1753 | 2.6 | 8500 | 0.2802 | 0.8988 | | 0.1859 | 2.75 | 9000 | 0.2775 | 0.9001 | | 0.1809 | 2.9 | 9500 | 0.2767 | 0.8988 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0