--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-qnli-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QNLI type: tmnam20/VieGLUE config: qnli split: validation args: qnli metrics: - name: Accuracy type: accuracy value: 0.8974922203917262 --- # mdeberta-v3-base-qnli-100 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.2906 - Accuracy: 0.8975 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3773 | 0.15 | 500 | 0.3870 | 0.8431 | | 0.3547 | 0.31 | 1000 | 0.3175 | 0.8658 | | 0.3385 | 0.46 | 1500 | 0.2986 | 0.8739 | | 0.342 | 0.61 | 2000 | 0.2787 | 0.8845 | | 0.3003 | 0.76 | 2500 | 0.3075 | 0.8726 | | 0.3298 | 0.92 | 3000 | 0.2781 | 0.8807 | | 0.2475 | 1.07 | 3500 | 0.2695 | 0.8942 | | 0.2441 | 1.22 | 4000 | 0.2615 | 0.8940 | | 0.249 | 1.37 | 4500 | 0.2548 | 0.8958 | | 0.2261 | 1.53 | 5000 | 0.2588 | 0.8946 | | 0.2348 | 1.68 | 5500 | 0.2587 | 0.8982 | | 0.2626 | 1.83 | 6000 | 0.2581 | 0.8982 | | 0.2463 | 1.99 | 6500 | 0.2520 | 0.8964 | | 0.1768 | 2.14 | 7000 | 0.2795 | 0.8951 | | 0.1768 | 2.29 | 7500 | 0.3069 | 0.8942 | | 0.1752 | 2.44 | 8000 | 0.2783 | 0.8971 | | 0.1687 | 2.6 | 8500 | 0.2900 | 0.8995 | | 0.163 | 2.75 | 9000 | 0.2828 | 0.8969 | | 0.1547 | 2.9 | 9500 | 0.2873 | 0.8980 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0