--- language: - en license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: mdeberta-v3-base-sst2-10 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/SST2 type: tmnam20/VieGLUE config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8979357798165137 --- # mdeberta-v3-base-sst2-10 This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3852 - Accuracy: 0.8979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3449 | 0.24 | 500 | 0.3368 | 0.8567 | | 0.2987 | 0.48 | 1000 | 0.3037 | 0.8716 | | 0.2492 | 0.71 | 1500 | 0.3347 | 0.8842 | | 0.24 | 0.95 | 2000 | 0.2953 | 0.8830 | | 0.195 | 1.19 | 2500 | 0.3445 | 0.8842 | | 0.1934 | 1.43 | 3000 | 0.3217 | 0.8876 | | 0.1697 | 1.66 | 3500 | 0.3627 | 0.8876 | | 0.1757 | 1.9 | 4000 | 0.3366 | 0.8899 | | 0.1328 | 2.14 | 4500 | 0.4266 | 0.8876 | | 0.1475 | 2.38 | 5000 | 0.3737 | 0.8933 | | 0.1574 | 2.61 | 5500 | 0.3888 | 0.8911 | | 0.1548 | 2.85 | 6000 | 0.4063 | 0.8865 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0