--- language: - en license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy model-index: - name: xlm-roberta-base-sst2-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/SST2 type: tmnam20/VieGLUE config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8944954128440367 --- # xlm-roberta-base-sst2-100 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the tmnam20/VieGLUE/SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3776 - Accuracy: 0.8945 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4011 | 0.24 | 500 | 0.3866 | 0.8475 | | 0.313 | 0.48 | 1000 | 0.3352 | 0.8647 | | 0.2626 | 0.71 | 1500 | 0.4805 | 0.8349 | | 0.2597 | 0.95 | 2000 | 0.3691 | 0.8681 | | 0.2068 | 1.19 | 2500 | 0.3089 | 0.8991 | | 0.2347 | 1.43 | 3000 | 0.3957 | 0.8842 | | 0.2133 | 1.66 | 3500 | 0.3049 | 0.8991 | | 0.1986 | 1.9 | 4000 | 0.3184 | 0.8956 | | 0.1596 | 2.14 | 4500 | 0.3846 | 0.8853 | | 0.1457 | 2.38 | 5000 | 0.3667 | 0.8968 | | 0.1861 | 2.61 | 5500 | 0.3675 | 0.8922 | | 0.1401 | 2.85 | 6000 | 0.3853 | 0.8899 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.2.0.dev20231203+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0