--- language: - en license: mit base_model: xlm-roberta-large tags: - generated_from_trainer datasets: - tmnam20/VieGLUE metrics: - accuracy - f1 model-index: - name: xlm-roberta-large-qqp-100 results: - task: name: Text Classification type: text-classification dataset: name: tmnam20/VieGLUE/QQP type: tmnam20/VieGLUE config: qqp split: validation args: qqp metrics: - name: Accuracy type: accuracy value: 0.6318327974276527 - name: F1 type: f1 value: 0.0 --- # xlm-roberta-large-qqp-100 This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the tmnam20/VieGLUE/QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.6726 - Accuracy: 0.6318 - F1: 0.0 - Combined Score: 0.3159 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 100 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---:|:--------------:| | 0.6588 | 0.88 | 10000 | 0.6582 | 0.6318 | 0.0 | 0.3159 | | 0.6572 | 1.76 | 20000 | 0.6583 | 0.6318 | 0.0 | 0.3159 | | 0.6578 | 2.64 | 30000 | 0.6771 | 0.6318 | 0.0 | 0.3159 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.1.0+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0