--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-finetuned-fullsample-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: pt split: None args: pt metrics: - name: Wer type: wer value: 11.31198430186737 --- # whisper-finetuned-fullsample-v1 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3719 - Wer: 11.3120 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 600 - training_steps: 6000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0094 | 8.1384 | 1000 | 0.2714 | 24.2485 | | 0.0008 | 16.2767 | 2000 | 0.3292 | 25.8955 | | 0.0011 | 24.4151 | 3000 | 0.3289 | 12.6679 | | 0.0003 | 32.5534 | 4000 | 0.3546 | 12.0631 | | 0.0015 | 40.6918 | 5000 | 0.3405 | 12.0647 | | 0.0002 | 48.8301 | 6000 | 0.3719 | 11.3120 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu124 - Datasets 3.0.2.dev0 - Tokenizers 0.20.0