--- language: - en - ja library_name: transformers pipeline_tag: text-generation model_type: mistral license: apache-2.0 --- # Swallow-MS-7b-v0.1 Our Swallow-MS-7b-v0.1 model has undergone continuous pre-training from the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1), primarily with the addition of Japanese language data. **The instruction tuning version will be released soon.** ![logo](./logo.png) ## Model Details * **Model type**: Please refer to Mistral technical report for details on the model architecture. * **Language(s)**: Japanese English * **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process. * **Contact**: swallow[at]nlp.c.titech.ac.jp ## Base Model Performance ### Japanese version |Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|Average| |---------------------------|-------|---------|-------|-------|-------|------|------------|------------|------|-----| | | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|| | CyberAgentLM2-7B |7B| 0.2198 | 0.5047 | 0.5066 | 0.7799 | 0.0233 | 0.0600 | 0.2345 | 0.1499 | 0.3098 | | Llama 2 |7B| 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 | 0.3201 | | japanese-stablelm-base-beta-7b|7B| 0.3610 | 0.4478 | 0.4432 | 0.8318 | 0.2195 | 0.0720 | 0.1946 | 0.1226 | 0.3366 | | japanese-stablelm-base-ja_vocab-beta-7b|7B| 0.2172 | 0.4482 | 0.4309 | 0.8202 | 0.0757 | 0.0520 | 0.1601 | 0.1453 | 0.2937 | | ELYZA-japanese-Llama-2-7b|7B| 0.5791 | 0.4703 | 0.4019 | 0.8226 | 0.1312 | 0.0600 | 0.1795 | 0.1289 | 0.3467 | | ELYZA-japanese-Llama-2-7b-fast|7B| 0.5308 | 0.4330 | 0.3898 | 0.8131 | 0.1289 | 0.0720 | 0.1678 | 0.1143 | 0.3312 | | youri-7b (base) |7B| 0.4620 | 0.4776 | 0.4999 | 0.8506 | 0.1957 | 0.0640 | 0.2671 | **0.1971** | 0.3768 | | Swallow-7b |7B| 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 | 0.3940 | | Swallow-7b-plus |7B| 0.5478 | **0.5493** | **0.6030** | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 | 0.4090 | | Qwen-7B |7B| 0.7712 | 0.4234 | 0.2376 | 0.8594 | 0.1371 | 0.2160 | 0.1689 | 0.1801 | 0.3742 | | nekomata-7b |7B| 0.7417 | 0.4928 | 0.5022 | 0.8707 | 0.1676 | 0.1240 | **0.2673** | 0.1815 | 0.4185 | | Mistral-7B-v0.1 |7B| 0.7301 | 0.4245 | 0.2722 | 0.8563 | 0.2006 | 0.1760 | 0.1405 | 0.1733 | 0.3717 | | japanese-stablelm-base-gamma-7b|7B| 0.7364 | 0.4643 | 0.5568 | **0.8910** | **0.2293** | 0.1680 | 0.2390 | 0.1561 | 0.4301 | | Swallow-MS-7b-v0.1 |7B| **0.8570** | 0.4915 | 0.5519 | 0.8802 | 0.1988 | **0.2240** | 0.2494 | 0.1667 | **0.4524** | ### English version |Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K|Average| |---|---|---|---|---|---|---|---|---| | | |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot|| | CyberAgentLM2-7B |7B| 0.2860 | 0.3496 | 0.5003 | 0.3510 | 0.8581 | 0.0705 | 0.4026 | | Llama 2 |7B| 0.3580 | 0.6265 | 0.5860 | 0.3207 | 0.9049 | 0.1410 | 0.4895 | | japanese-stablelm-base-beta-7b|7B| 0.3620 | 0.5903 | 0.5707 | 0.2992 | 0.8994 | 0.1198 | 0.4736 | | japanese-stablelm-base-ja_vocab-beta-7b|7B| 0.3520 | 0.5549 | 0.5644 | 0.3079 | 0.8942 | 0.0538 | 0.4545 | | ELYZA-japanese-Llama-2-7b|7B| 0.3400 | 0.5875 | 0.5595 | 0.2721 | 0.8989 | 0.1638 | 0.4703 | | ELYZA-japanese-Llama-2-7b-fast|7B| 0.3280 | 0.5817 | 0.5530 | 0.2605 | 0.8989 | 0.1425 | 0.4608 | | youri-7b (base) |7B| 0.3400 | 0.5257 | 0.5540 | 0.3297 | 0.8938 | 0.0963 | 0.4566 | | Swallow-7b |7B| 0.3180 | 0.4836 | 0.5308 | 0.3125 | 0.8817 | 0.1130 | 0.4399 | | Swallow-7b-plus |7B| 0.3280 | 0.4558 | 0.5259 | 0.3134 | 0.8929 | 0.1061 | 0.4370 | | Qwen-7B |7B| 0.3640 | 0.5695 | 0.5787 | **0.3799** | 0.8933 | **0.4617** | 0.5412 | | nekomata-7b |7B| 0.3340 | 0.4371 | 0.5340 | 0.2933 | 0.8766 | 0.1531 | 0.4380 | | Mistral-7B-v0.1 |7B| **0.3660** | **0.7050** | **0.6264** | **0.3799** | **0.9157** | 0.3533 | **0.5577** | | japanese-stablelm-base-gamma-7b|7B| 0.3240 | 0.5745 | 0.5739 | 0.3546 | 0.8976 | 0.1911 | 0.4860 | | Swallow-MS-7b-v0.1 |7B| 0.3440 | 0.5976 | 0.5810 | 0.3364 | 0.9037 | 0.2623 | 0.5042 | ### Code version |Model|Size|JHumanEval|HumanEval| |---|---|---|---| | | |pass@1|pass@1| | CyberAgentLM2-7B |7B|0.0634|0.0756| | Llama 2 |7B|0.1152|0.1378| | japanese-stablelm-base-beta-7b|7B|0.1018|0.1280| | japanese-stablelm-base-ja_vocab-beta-7b|7B|0.0896|0.1122| | ELYZA-japanese-Llama-2-7b|7B|0.0287|0.0427| | ELYZA-japanese-Llama-2-7b-fast|7B| 0.0000 |0.0037| | youri-7b (base) |7B|0.0829|0.0982| | Swallow-7b |7B|0.0183|0.0183| | Swallow-7b-plus |7B| 0.0061|0.0037| | Qwen-7B |7B|0.1701|0.1805| | nekomata-7b |7B|0.0988|0.1402| | Mistral-7B-v0.1 |7B|**0.2555**|**0.2933**| | japanese-stablelm-base-gamma-7b|7B|0.1823|0.1915| | Swallow-MS-7b-v0.1 |7B|0.2305|0.2768| ## Usage First install additional dependencies in [requirements.txt](./requirements.txt): ```sh pip install -r requirements.txt ``` ### Use the base model ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_name = "tokyotech-llm/Swallow-MS-7b-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") model = AutoModelForCausalLM.from_pretrained(model_name) prompt = "東京工業大学の主なキャンパスは、" input_ids = tokenizer.encode( prompt, add_special_tokens=False, return_tensors="pt" ) tokens = model.generate( input_ids.to(device=model.device), max_new_tokens=128, temperature=0.99, top_p=0.95, do_sample=True, ) out = tokenizer.decode(tokens[0], skip_special_tokens=True) print(out) ``` ## Training Datasets ### Continual Pre-Training The following datasets were used for continual pre-training. - [Algebraic Stack](https://huggingface.co/datasets/EleutherAI/proof-pile-2) - [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) - [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) - [Swallow Corpus](https://chokkan.org/temp/tokyotech-llm/swallow-corpus) - [The Pile](https://huggingface.co/datasets/EleutherAI/pile) ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Acknowledgements We thank Mistral AI for releasing Mistral 7B v0.1 under an open license for others to build on. Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology. ## License apache-2.0 ## Authors Here are the team members: - From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members: - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html) - [Sakae Mizuki](https://s-mizuki-nlp.github.io/) - [Hiroki Iida](https://meshidenn.github.io/) - [Mengsay Loem](https://loem-ms.github.io/) - [Shota Hirai](https://huggingface.co/Kotemo428) - [Kakeru Hattori](https://aya-se.vercel.app/) - [Masanari Ohi](https://twitter.com/stjohn2007) - From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members: - [Rio Yokota](https://twitter.com/rioyokota) - [Kazuki Fujii](https://twitter.com/okoge_kaz) - [Taishi Nakamura](https://twitter.com/Setuna7777_2)