---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-mpnet-base-v2
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: A boy is vacuuming.
sentences:
- A little boy is vacuuming the floor.
- A woman is riding an elephant.
- People are sitting on benches.
- source_sentence: A man shoots a man.
sentences:
- The man is aiming a gun.
- A man is tracking in the wood.
- A woman leading a white horse.
- source_sentence: A plane in the sky.
sentences:
- A plane rides on a road.
- A tiger walks around aimlessly.
- Two dogs playing on the shore.
- source_sentence: A baby is laughing.
sentences:
- The baby laughed in his car seat.
- A toddler walks down a hallway.
- There are dogs in the forest.
- source_sentence: The gate is yellow.
sentences:
- The gate is blue.
- US spends $50m on carp invasion
- Suicide bomber strikes in Syria
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 9.73131270828096
energy_consumed: 0.025035406836808046
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.122
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.9105652572605438
name: Pearson Cosine
- type: spearman_cosine
value: 0.9097842782963139
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8999692728646553
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.909018931820409
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9003677259034385
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9097842782963139
name: Spearman Euclidean
- type: pearson_dot
value: 0.9105652590717077
name: Pearson Dot
- type: spearman_dot
value: 0.9097842782963139
name: Spearman Dot
- type: pearson_max
value: 0.9105652590717077
name: Pearson Max
- type: spearman_max
value: 0.9097842782963139
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8764756843077764
name: Pearson Cosine
- type: spearman_cosine
value: 0.8733461504859822
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8668031220817161
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8725075805222068
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8674774784108314
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8733464312456004
name: Spearman Euclidean
- type: pearson_dot
value: 0.8764756858675475
name: Pearson Dot
- type: spearman_dot
value: 0.8733464312456004
name: Spearman Dot
- type: pearson_max
value: 0.8764756858675475
name: Pearson Max
- type: spearman_max
value: 0.8733464312456004
name: Spearman Max
---
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/all-mpnet-base-v2-sts")
# Run inference
sentences = [
'The gate is yellow.',
'The gate is blue.',
'US spends $50m on carp invasion',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.9106 |
| **spearman_cosine** | **0.9098** |
| pearson_manhattan | 0.9 |
| spearman_manhattan | 0.909 |
| pearson_euclidean | 0.9004 |
| spearman_euclidean | 0.9098 |
| pearson_dot | 0.9106 |
| spearman_dot | 0.9098 |
| pearson_max | 0.9106 |
| spearman_max | 0.9098 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8765 |
| **spearman_cosine** | **0.8733** |
| pearson_manhattan | 0.8668 |
| spearman_manhattan | 0.8725 |
| pearson_euclidean | 0.8675 |
| spearman_euclidean | 0.8733 |
| pearson_dot | 0.8765 |
| spearman_dot | 0.8733 |
| pearson_max | 0.8765 |
| spearman_max | 0.8733 |
## Training Details
### Training Dataset
#### sentence-transformers/stsb
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
A plane is taking off.
| An air plane is taking off.
| 1.0
|
| A man is playing a large flute.
| A man is playing a flute.
| 0.76
|
| A man is spreading shreded cheese on a pizza.
| A man is spreading shredded cheese on an uncooked pizza.
| 0.76
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### sentence-transformers/stsb
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | A man with a hard hat is dancing.
| A man wearing a hard hat is dancing.
| 1.0
|
| A young child is riding a horse.
| A child is riding a horse.
| 0.95
|
| A man is feeding a mouse to a snake.
| The man is feeding a mouse to the snake.
| 1.0
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters