---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:Matryoshka2dLoss
- loss:MatryoshkaLoss
- loss:CoSENTLoss
base_model: distilbert/distilbert-base-uncased
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: A woman is reading.
sentences:
- A woman is taking a picture.
- Breivik complains of 'ridicule'
- The small dog protects its owner.
- source_sentence: A man shoots a man.
sentences:
- A man is shooting off guns.
- A tiger walks around aimlessly.
- A cat sleeps on purple sheet.
- source_sentence: A man is speaking.
sentences:
- A man is talking.
- 19 hurt in New Orleans shooting
- The dogs are chasing a black cat.
- source_sentence: A man is spitting.
sentences:
- Breivik complains of 'ridicule'
- The man is hiking in the woods.
- Eurozone agrees Greece bail-out
- source_sentence: A parrot is talking.
sentences:
- A parrot is talking into a microphone.
- A monkey pratices martial arts.
- The two men are wearing jeans.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 5.379215660466108
energy_consumed: 0.013838919430479152
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.072
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.861868947947514
name: Pearson Cosine
- type: spearman_cosine
value: 0.8712617743584893
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8611484157829896
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8619125760745536
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8615299857042606
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8623855766060573
name: Spearman Euclidean
- type: pearson_dot
value: 0.7716399182083511
name: Pearson Dot
- type: spearman_dot
value: 0.781574012832885
name: Spearman Dot
- type: pearson_max
value: 0.861868947947514
name: Pearson Max
- type: spearman_max
value: 0.8712617743584893
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8281542233533932
name: Pearson Cosine
- type: spearman_cosine
value: 0.8373087013752897
name: Spearman Cosine
- type: pearson_manhattan
value: 0.842468233222574
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8374178427964344
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8424571958251152
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8372826604544046
name: Spearman Euclidean
- type: pearson_dot
value: 0.6750086731901399
name: Pearson Dot
- type: spearman_dot
value: 0.656834541089774
name: Spearman Dot
- type: pearson_max
value: 0.842468233222574
name: Pearson Max
- type: spearman_max
value: 0.8374178427964344
name: Spearman Max
---
# SentenceTransformer based on distilbert/distilbert-base-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilbert-base-uncased-sts-2d-matryoshka")
# Run inference
sentences = [
'A parrot is talking.',
'A parrot is talking into a microphone.',
'A monkey pratices martial arts.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8619 |
| **spearman_cosine** | **0.8713** |
| pearson_manhattan | 0.8611 |
| spearman_manhattan | 0.8619 |
| pearson_euclidean | 0.8615 |
| spearman_euclidean | 0.8624 |
| pearson_dot | 0.7716 |
| spearman_dot | 0.7816 |
| pearson_max | 0.8619 |
| spearman_max | 0.8713 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8282 |
| **spearman_cosine** | **0.8373** |
| pearson_manhattan | 0.8425 |
| spearman_manhattan | 0.8374 |
| pearson_euclidean | 0.8425 |
| spearman_euclidean | 0.8373 |
| pearson_dot | 0.675 |
| spearman_dot | 0.6568 |
| pearson_max | 0.8425 |
| spearman_max | 0.8374 |
## Training Details
### Training Dataset
#### sentence-transformers/stsb
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
A plane is taking off.
| An air plane is taking off.
| 1.0
|
| A man is playing a large flute.
| A man is playing a flute.
| 0.76
|
| A man is spreading shreded cheese on a pizza.
| A man is spreading shredded cheese on an uncooked pizza.
| 0.76
|
* Loss: [Matryoshka2dLoss
](https://sbert.net/docs/package_reference/losses.html#matryoshka2dloss) with these parameters:
```json
{
"loss": "CoSENTLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.0,
"prior_layers_weight": 1.0,
"kl_div_weight": 1.0,
"kl_temperature": 0.3,
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": 1
}
```
### Evaluation Dataset
#### sentence-transformers/stsb
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | A man with a hard hat is dancing.
| A man wearing a hard hat is dancing.
| 1.0
|
| A young child is riding a horse.
| A child is riding a horse.
| 0.95
|
| A man is feeding a mouse to a snake.
| The man is feeding a mouse to the snake.
| 1.0
|
* Loss: [Matryoshka2dLoss
](https://sbert.net/docs/package_reference/losses.html#matryoshka2dloss) with these parameters:
```json
{
"loss": "CoSENTLoss",
"n_layers_per_step": 1,
"last_layer_weight": 1.0,
"prior_layers_weight": 1.0,
"kl_div_weight": 1.0,
"kl_temperature": 0.3,
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": 1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters