--- language: en license: apache-2.0 library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer datasets: - tomaarsen/setfit-absa-semeval-restaurants metrics: - accuracy widget: - text: bottles of wine:bottles of wine are cheap and good. - text: world:I also ordered the Change Mojito, which was out of this world. - text: bar:We were still sitting at the bar while we drank the sangria, but facing away from the bar when we turned back around, the $2 was gone the people next to us said the bartender took it. - text: word:word of advice, save room for pasta dishes and never leave until you've had the tiramisu. - text: bartender:We were still sitting at the bar while we drank the sangria, but facing away from the bar when we turned back around, the $2 was gone the people next to us said the bartender took it. pipeline_tag: text-classification inference: false co2_eq_emissions: emissions: 18.322516829847984 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.303 hardware_used: 1 x NVIDIA GeForce RTX 3090 base_model: BAAI/bge-small-en-v1.5 model-index: - name: SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants) results: - task: type: text-classification name: Text Classification dataset: name: SemEval 2014 Task 4 (Restaurants) type: tomaarsen/setfit-absa-semeval-restaurants split: test metrics: - type: accuracy value: 0.8623188405797102 name: Accuracy --- # SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants) This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants) dataset that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect) - **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect | | | no aspect | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8623 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import AbsaModel # Download from the 🤗 Hub model = AbsaModel.from_pretrained( "tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect", "tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity", ) # Run inference preds = model("The food was great, but the venue is just way too busy.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 4 | 19.3576 | 45 | | Label | Training Sample Count | |:----------|:----------------------| | no aspect | 170 | | aspect | 255 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (5, 5) - max_steps: 5000 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: True - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:----------:|:-------:|:-------------:|:---------------:| | 0.0027 | 1 | 0.2498 | - | | 0.1355 | 50 | 0.2442 | - | | 0.2710 | 100 | 0.2462 | 0.2496 | | 0.4065 | 150 | 0.2282 | - | | 0.5420 | 200 | 0.0752 | 0.1686 | | 0.6775 | 250 | 0.0124 | - | | 0.8130 | 300 | 0.0128 | 0.1884 | | 0.9485 | 350 | 0.0062 | - | | 1.0840 | 400 | 0.0012 | 0.183 | | 1.2195 | 450 | 0.0009 | - | | 1.3550 | 500 | 0.0008 | 0.2072 | | 1.4905 | 550 | 0.0031 | - | | 1.6260 | 600 | 0.0006 | 0.1716 | | 1.7615 | 650 | 0.0005 | - | | **1.8970** | **700** | **0.0005** | **0.1666** | | 2.0325 | 750 | 0.0005 | - | | 2.1680 | 800 | 0.0004 | 0.2086 | | 2.3035 | 850 | 0.0005 | - | | 2.4390 | 900 | 0.0004 | 0.183 | | 2.5745 | 950 | 0.0004 | - | | 2.7100 | 1000 | 0.0036 | 0.1725 | | 2.8455 | 1050 | 0.0004 | - | | 2.9810 | 1100 | 0.0003 | 0.1816 | | 3.1165 | 1150 | 0.0004 | - | | 3.2520 | 1200 | 0.0003 | 0.1802 | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.018 kg of CO2 - **Hours Used**: 0.303 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.9.16 - SetFit: 1.0.0.dev0 - Sentence Transformers: 2.2.2 - spaCy: 3.7.2 - Transformers: 4.29.0 - PyTorch: 1.13.1+cu117 - Datasets: 2.15.0 - Tokenizers: 0.13.3 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```