--- language: en license: apache-2.0 library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer datasets: - tomaarsen/setfit-absa-semeval-restaurants metrics: - accuracy widget: - text: bottles of wine:bottles of wine are cheap and good. - text: world:I also ordered the Change Mojito, which was out of this world. - text: bar:We were still sitting at the bar while we drank the sangria, but facing away from the bar when we turned back around, the $2 was gone the people next to us said the bartender took it. - text: word:word of advice, save room for pasta dishes and never leave until you've had the tiramisu. - text: bartender:We were still sitting at the bar while we drank the sangria, but facing away from the bar when we turned back around, the $2 was gone the people next to us said the bartender took it. pipeline_tag: text-classification inference: false co2_eq_emissions: emissions: 18.322516829847984 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.303 hardware_used: 1 x NVIDIA GeForce RTX 3090 base_model: BAAI/bge-small-en-v1.5 model-index: - name: SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants) results: - task: type: text-classification name: Text Classification dataset: name: SemEval 2014 Task 4 (Restaurants) type: tomaarsen/setfit-absa-semeval-restaurants split: test metrics: - type: accuracy value: 0.8623188405797102 name: Accuracy --- # SetFit Aspect Model with BAAI/bge-small-en-v1.5 on SemEval 2014 Task 4 (Restaurants) This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants) dataset that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. **Use this SetFit model to filter these possible aspect span candidates.** 3. Use a SetFit model to classify the filtered aspect span candidates. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect) - **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes - **Training Dataset:** [SemEval 2014 Task 4 (Restaurants)](https://huggingface.co/datasets/tomaarsen/setfit-absa-semeval-restaurants) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | aspect |