--- library_name: transformers license: llama3 base_model: meta-llama/Meta-Llama-3-8B-Instruct tags: - trl - dpo - generated_from_trainer model-index: - name: Llama0-3-8b-v0.1-dpo-lr5e-7-e1 results: [] --- # Llama0-3-8b-v0.1-dpo-lr5e-7-e1 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6647 - Rewards/chosen: -0.4944 - Rewards/rejected: -0.5567 - Rewards/accuracies: 0.5968 - Rewards/margins: 0.0624 - Logps/rejected: -142.4301 - Logps/chosen: -137.7279 - Logits/rejected: 0.1487 - Logits/chosen: 0.1334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6888 | 0.2137 | 100 | 0.6885 | -0.0371 | -0.0441 | 0.5806 | 0.0070 | -91.1662 | -92.0013 | 0.0596 | 0.0400 | | 0.6799 | 0.4275 | 200 | 0.6786 | -0.1682 | -0.1907 | 0.6089 | 0.0225 | -105.8212 | -105.1108 | 0.1016 | 0.0832 | | 0.669 | 0.6412 | 300 | 0.6697 | -0.3621 | -0.4081 | 0.6008 | 0.0459 | -127.5619 | -124.5048 | 0.1494 | 0.1334 | | 0.6673 | 0.8549 | 400 | 0.6657 | -0.4687 | -0.5277 | 0.5887 | 0.0590 | -139.5236 | -135.1644 | 0.1472 | 0.1318 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.20.0