--- license: apache-2.0 base_model: h2oai/h2o-danube2-1.8b-base datasets: - ajibawa-2023/Code-290k-ShareGPT language: - en library_name: transformers tags: - llama-factory - unsloth --- # h2o-danube2 with ChatML template This model was first fine-tuned with [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") on [ajibawa-2023/Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT) using LLama-Factory. ## Template ```jinja <|im_start|>system You are a helpful coding assistant.<|im_end|> <|im_start|>user {{instruction}}<|im_end|> <|im_start|>assistant {{response}}<|im_end|> ``` ### BAdam config ```yaml ### model model_name_or_path: danube2-base-chatml ### method stage: sft do_train: true finetuning_type: full use_badam: true badam_switch_mode: ascending badam_switch_interval: 50 badam_verbose: 1 badam_start_block: 8 seed: 8 ### dataset dataset: code_290k template: hermes_chatml cutoff_len: 8192 overwrite_cache: false preprocessing_num_workers: 12 ### output output_dir: code-290k-chatml-badam logging_steps: 5 save_steps: 1 save_strategy: epoch plot_loss: true overwrite_output_dir: false ### train per_device_train_batch_size: 2 gradient_accumulation_steps: 8 learning_rate: 0.00001 num_train_epochs: 1 lr_scheduler_type: constant_with_warmup warmup_ratio: 0.01 bf16: true flash_attn: fa2 ### eval val_size: 0.01 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 1000 ``` ### BAdam training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.7404 | 0.0559 | 1000 | 0.7784 | | 0.7858 | 0.1118 | 2000 | 0.7702 | | 0.7274 | 0.1677 | 3000 | 0.7604 | | 0.6956 | 0.2236 | 4000 | 0.7570 | | 0.7711 | 0.2795 | 5000 | 0.7541 | | 0.7643 | 0.3354 | 6000 | 0.7518 | | 0.8255 | 0.3913 | 7000 | 0.7496 | | 0.7456 | 0.4472 | 8000 | 0.7483 | | 0.7718 | 0.5031 | 9000 | 0.7447 | | 0.6693 | 0.5590 | 10000 | 0.7445 | | 0.7409 | 0.6149 | 11000 | 0.7433 | | 0.7319 | 0.6709 | 12000 | 0.7424 | | 0.7636 | 0.7268 | 13000 | 0.7415 | | 0.7504 | 0.7827 | 14000 | 0.7414 | | 0.7735 | 0.8386 | 15000 | 0.7374 | | 0.7438 | 0.8945 | 16000 | 0.7375 | | 0.839 | 0.9504 | 17000 | 0.7373 |