--- base_model: Trisert/tinyllama-alpaca library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: outputs/qlora-out-context results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: qlora base_model: Trisert/tinyllama-alpaca bf16: false dataset_prepared_path: null datasets: - ds_tipe: json path: /content/pubmed_continual_pretraning_dataset.jsonl type: completion debug: null deepspeed: null early_stopping_patience: null eval_sample_packing: false evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false learning_rate: 0.0002 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: null lr_scheduler: cosine micro_batch_size: 8 model_type: AutoModelForCausalLM num_epochs: 4 optimizer: paged_adamw_32bit output_dir: ./outputs/qlora-out-context pad_to_sequence_len: false resume_from_checkpoint: null sample_packing: false saves_per_epoch: 1 sequence_len: 4096 special_tokens: null strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false val_set_size: 0.05 wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# outputs/qlora-out-context This model is a fine-tuned version of [Trisert/tinyllama-alpaca](https://huggingface.co/Trisert/tinyllama-alpaca) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6905 | 0.0336 | 1 | 2.7292 | | 2.4725 | 0.2689 | 8 | 2.3972 | | 1.9891 | 0.5378 | 16 | 2.0718 | | 1.8345 | 0.8067 | 24 | 1.9329 | | 1.8088 | 1.0756 | 32 | 1.8730 | | 1.8183 | 1.3445 | 40 | 1.8430 | | 1.8004 | 1.6134 | 48 | 1.8263 | | 1.7674 | 1.8824 | 56 | 1.8167 | | 1.7164 | 2.1513 | 64 | 1.8104 | | 1.6525 | 2.4202 | 72 | 1.8069 | | 1.7917 | 2.6891 | 80 | 1.8053 | | 1.8022 | 2.9580 | 88 | 1.8037 | | 1.6917 | 3.2269 | 96 | 1.8032 | | 1.765 | 3.4958 | 104 | 1.8030 | | 1.6784 | 3.7647 | 112 | 1.8030 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1