--- language: ja datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: wav2vec2-live-japanese results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice Japanese type: common_voice args: ja metrics: - name: Test WER type: wer value: 21.48% - name: Test CER type: cer value: 9.82% --- # wav2vec2-live-japanese https://github.com/ttop32/wav2vec2-live-japanese-translator Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese hiragana using the - [common_voice](https://huggingface.co/datasets/common_voice) - [JSUT](https://sites.google.com/site/shinnosuketakamichi/publication/jsut) - [CSS10](https://github.com/Kyubyong/css10) - [TEDxJP-10K](https://github.com/laboroai/TEDxJP-10K) - [JVS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_corpus) - [JSSS](https://sites.google.com/site/shinnosuketakamichi/research-topics/jsss_corpus) ## Inference ```python #usage import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor model = Wav2Vec2ForCTC.from_pretrained("ttop324/wav2vec2-live-japanese") processor = Wav2Vec2Processor.from_pretrained("ttop324/wav2vec2-live-japanese") test_dataset = load_dataset("common_voice", "ja", split="test") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.functional.resample(speech_array, sampling_rate, 16000)[0].numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset[:2]["sentence"]) ``` ## Evaluation ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import pykakasi import MeCab wer = load_metric("wer") cer = load_metric("cer") model = Wav2Vec2ForCTC.from_pretrained("ttop324/wav2vec2-live-japanese").to("cuda") processor = Wav2Vec2Processor.from_pretrained("ttop324/wav2vec2-live-japanese") test_dataset = load_dataset("common_voice", "ja", split="test") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\‘\”\�‘、。.!,・―─~「」『』\\\\※\[\]\{\}「」〇?…]' wakati = MeCab.Tagger("-Owakati") kakasi = pykakasi.kakasi() kakasi.setMode("J","H") # kanji to hiragana kakasi.setMode("K","H") # katakana to hiragana conv = kakasi.getConverter() FULLWIDTH_TO_HALFWIDTH = str.maketrans( ' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!゛#$%&()*+、ー。/:;〈=〉?@[]^_‘{|}~', ' 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&()*+,-./:;<=>?@[]^_`{|}~', ) def fullwidth_to_halfwidth(s): return s.translate(FULLWIDTH_TO_HALFWIDTH) def preprocessData(batch): batch["sentence"] = fullwidth_to_halfwidth(batch["sentence"]) batch["sentence"] = re.sub(chars_to_ignore_regex,' ', batch["sentence"]).lower() #remove special char batch["sentence"] = wakati.parse(batch["sentence"]) #add space batch["sentence"] = conv.do(batch["sentence"]) #covert to hiragana batch["sentence"] = " ".join(batch["sentence"].split())+" " #remove multiple space speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = torchaudio.functional.resample(speech_array, sampling_rate, 16000)[0].numpy() return batch test_dataset = test_dataset.map(preprocessData) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ```