--- license: other base_model: Qwen/Qwen1.5-4B tags: - generated_from_trainer datasets: - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa metrics: - accuracy model-index: - name: lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2 results: - task: name: Causal Language Modeling type: text-generation dataset: name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa metrics: - name: Accuracy type: accuracy value: 0.49263492063492065 library_name: peft --- # lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2 This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set: - Loss: 3.4933 - Accuracy: 0.4926 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2624 | 1.0 | 250 | 2.3220 | 0.5159 | | 2.0942 | 2.0 | 500 | 2.3289 | 0.5176 | | 1.8479 | 3.0 | 750 | 2.3997 | 0.5148 | | 1.6153 | 4.0 | 1000 | 2.5067 | 0.5107 | | 1.3618 | 5.0 | 1250 | 2.6641 | 0.5052 | | 1.1477 | 6.0 | 1500 | 2.8411 | 0.5016 | | 0.9248 | 7.0 | 1750 | 3.0246 | 0.4978 | | 0.7705 | 8.0 | 2000 | 3.2090 | 0.4954 | | 0.6344 | 9.0 | 2250 | 3.3400 | 0.4935 | | 0.5612 | 10.0 | 2500 | 3.4933 | 0.4926 | ### Framework versions - PEFT 0.5.0 - Transformers 4.40.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1