--- library_name: peft license: mit base_model: gpt2 tags: - generated_from_trainer datasets: - hatexplain metrics: - accuracy - precision - recall - f1 model-index: - name: finetuned-gpt2-lora-hatexplain results: [] --- # finetuned-gpt2-lora-hatexplain This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on the hatexplain dataset. It achieves the following results on the evaluation set: - Loss: 0.7617 - Accuracy: 0.6954 - Precision: 0.6905 - Recall: 0.6954 - F1: 0.6911 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6763 | 1.0 | 1923 | 0.7699 | 0.6629 | 0.6552 | 0.6629 | 0.6429 | | 0.8192 | 2.0 | 3846 | 0.7648 | 0.6712 | 0.6620 | 0.6712 | 0.6628 | | 0.7806 | 3.0 | 5769 | 0.7657 | 0.6571 | 0.6682 | 0.6571 | 0.6585 | | 0.6273 | 4.0 | 7692 | 0.8046 | 0.6769 | 0.6727 | 0.6769 | 0.6740 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.0 - Pytorch 2.5.1+cu118 - Datasets 3.1.0 - Tokenizers 0.21.0