--- library_name: transformers license: mit base_model: indobenchmark/indobert-base-p1 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: indobert-hoax-detection results: [] --- # indobert-hoax-detection This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 - Accuracy: 0.9831 - F1: 0.9823 - Precision: 0.9781 - Recall: 0.9865 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0797 | 1.0 | 739 | 0.0485 | 0.9882 | 0.9876 | 0.9858 | 0.9893 | | 0.0428 | 2.0 | 1478 | 0.0436 | 0.9868 | 0.9862 | 0.9817 | 0.9908 | | 0.0221 | 3.0 | 2217 | 0.0480 | 0.9885 | 0.9879 | 0.9879 | 0.9879 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1 - Datasets 2.19.2 - Tokenizers 0.20.1