using System.Collections; using System.Collections.Generic; using UnityEngine; using Unity.Sentis; using System.IO; using Newtonsoft.Json; using System.Text; /* * Phi 1.5 Inference Code * ======================= * * Put this script on the Main Camera * * In Assets/StreamingAssets put: * * phi15.sentis * vocab.json * merges.txt * * Install package com.unity.nuget.newtonsoft-json from packagemanger * Install package com.unity.sentis * */ public class RunPhi15 : MonoBehaviour { const BackendType backend = BackendType.GPUCompute; //string outputString = "Question: \"What is the capital of France?\"\n Correct answer: \""; //string outputString = "The human asked, \"What is your favourite animal?\" so the wise man answered correctly, \""; string outputString = "Once upon a time, there were three"; // This is how many tokens you want. It can be adjusted. const int maxTokens = 100; //Make this smaller for more randomness const float predictability = 5; //Special tokens const int END_OF_TEXT = 50256; Ops ops; ITensorAllocator allocator; //Store the vocabulary string[] tokens; IWorker engine; int currentToken = 0; int[] outputTokens = new int[maxTokens]; // Used for special character decoding int[] whiteSpaceCharacters = new int[256]; int[] encodedCharacters = new int[256]; bool runInference = false; //stop after this many tokens const int stopAfter = 200; int totalTokens = 0; string[] merges; Dictionary vocab; void Start() { allocator = new TensorCachingAllocator(); ops = WorkerFactory.CreateOps(backend, allocator); SetupWhiteSpaceShifts(); LoadVocabulary(); Model model = ModelLoader.Load(Application.streamingAssetsPath + "/phi15.sentis"); engine = WorkerFactory.CreateWorker(backend, model); GO(outputString); } public void GO(string text) { outputString = text; DecodePrompt(outputString); runInference = true; } // Update is called once per frame void Update() { if (runInference) { RunInference(); } } void RunInference() { using var tokensSoFar = new TensorInt(new TensorShape(1, maxTokens), outputTokens); engine.Execute(tokensSoFar); var tokensOut = engine.PeekOutput() as TensorFloat; using var row = ops.Slice(tokensOut, new[] { currentToken }, new[] { currentToken + 1 }, new[] { 1 }, new[] { 1 }); using var rowB = ops.Mul(predictability, row); using var probs = ops.Softmax(rowB, 2); probs.MakeReadable(); int ID = SelectRandomToken(probs.ToReadOnlyArray()); if (currentToken >= maxTokens - 1) { for (int i = 0; i < maxTokens - 1; i++) outputTokens[i] = outputTokens[i + 1]; currentToken--; } outputTokens[++currentToken] = ID; totalTokens++; if (ID == END_OF_TEXT || totalTokens >= stopAfter) { runInference = false; } else outputString += GetUnicodeText(tokens[ID]); Debug.Log(outputString); } void DecodePrompt(string text) { var inputTokens = GetTokens(text); for(int i = 0; i < inputTokens.Count; i++) { outputTokens[i] = inputTokens[i]; } currentToken = inputTokens.Count - 1; } void LoadVocabulary() { var jsonText = File.ReadAllText(Application.streamingAssetsPath + "/vocab.json"); vocab = Newtonsoft.Json.JsonConvert.DeserializeObject>(jsonText); tokens = new string[vocab.Count]; foreach (var item in vocab) { tokens[item.Value] = item.Key; } merges = File.ReadAllLines(Application.streamingAssetsPath + "/merges.txt"); } int SelectRandomToken(float[] probs) { float p = UnityEngine.Random.Range(0, 1f); float t = 0; for (int i = 0; i < probs.Length; i++) { t += probs[i]; if (p < t) { return i; } } return probs.Length - 1; } // Translates encoded special characters to Unicode string GetUnicodeText(string text) { var bytes = Encoding.GetEncoding("ISO-8859-1").GetBytes(ShiftCharacterDown(text)); return Encoding.UTF8.GetString(bytes); } string GetASCIIText(string newText) { var bytes = Encoding.UTF8.GetBytes(newText); return ShiftCharacterUp(Encoding.GetEncoding("ISO-8859-1").GetString(bytes)); } string ShiftCharacterDown(string text) { string outText = ""; foreach (char letter in text) { outText += ((int)letter <= 256) ? letter : (char)whiteSpaceCharacters[(int)(letter - 256)]; } return outText; } string ShiftCharacterUp(string text) { string outText = ""; foreach (char letter in text) { outText += (char)encodedCharacters[(int)letter]; } return outText; } void SetupWhiteSpaceShifts() { for (int i = 0, n = 0; i < 256; i++) { encodedCharacters[i] = i; if (IsWhiteSpace((char)i)) { encodedCharacters[i] = n + 256; whiteSpaceCharacters[n++] = i; } } } bool IsWhiteSpace(char c) { return !(('!' <= c && c <= '~') || ('�' <= c && c <= '�') || ('�' <= c && c <= '�')); } List GetTokens(string text) { text = GetASCIIText(text); // Start with a list of single characters var inputTokens = new List(); foreach(var letter in text) { inputTokens.Add(letter.ToString()); } ApplyMerges(inputTokens); //Find the ids of the words in the vocab var ids = new List(); foreach(var token in inputTokens) { if (vocab.TryGetValue(token, out int id)) { ids.Add(id); } } return ids; } void ApplyMerges(List inputTokens) { foreach(var merge in merges) { string[] pair = merge.Split(' '); int n = 0; while (n >= 0) { n = inputTokens.IndexOf(pair[0], n); if (n != -1 && n < inputTokens.Count - 1 && inputTokens[n + 1] == pair[1]) { inputTokens[n] += inputTokens[n + 1]; inputTokens.RemoveAt(n + 1); } if (n != -1) n++; } } } private void OnDestroy() { engine?.Dispose(); ops?.Dispose(); allocator?.Dispose(); } }