--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - maywell/PiVoT-0.1-Starling-LM-RP - WizardLM/WizardMath-7B-V1.1 base_model: - maywell/PiVoT-0.1-Starling-LM-RP - WizardLM/WizardMath-7B-V1.1 --- # Rose-2x7B Rose-2x7B is a Mixure of Experts (MoE) made with the following models using [Mergekit](https://github.com/cg123/mergekit): * [maywell/PiVoT-0.1-Starling-LM-RP](https://huggingface.co/maywell/PiVoT-0.1-Starling-LM-RP) * [WizardLM/WizardMath-7B-V1.1](https://huggingface.co/WizardLM/WizardMath-7B-V1.1) ```bash mergekit-moe mergekit_moe.yaml merge --copy-tokenizer --device cuda --low-cpu-memory ``` ## 🧩 Configuration ```yaml base_model: uproai/ros-7b-v1 experts: - source_model: maywell/PiVoT-0.1-Starling-LM-RP positive_prompts: - "storywriting" - "write" - "scene" - "story" - "character" - source_model: WizardLM/WizardMath-7B-V1.1 positive_prompts: - "reason" - "math" - "mathematics" - "solve" - "count" tokenizer_source: union ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "uproai/Rose-2x7B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```