--- license: apache-2.0 language: - en - fr - de - es - pt - it library_name: gliner pipeline_tag: token-classification datasets: - urchade/synthetic-pii-ner-mistral-v1 metrics: - accuracy base_model: - black-forest-labs/FLUX.1-dev new_version: black-forest-labs/FLUX.1-dev tags: - legal --- # Model Card for GLiNER PII GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios. This model has been trained by fine-tuning `urchade/gliner_multi-v2.1` on the `urchade/synthetic-pii-ner-mistral-v1` dataset. This model is capable of recognizing various types of *personally identifiable information* (PII), including but not limited to these entity types: `person`, `organization`, `phone number`, `address`, `passport number`, `email`, `credit card number`, `social security number`, `health insurance id number`, `date of birth`, `mobile phone number`, `bank account number`, `medication`, `cpf`, `driver's license number`, `tax identification number`, `medical condition`, `identity card number`, `national id number`, `ip address`, `email address`, `iban`, `credit card expiration date`, `username`, `health insurance number`, `registration number`, `student id number`, `insurance number`, `flight number`, `landline phone number`, `blood type`, `cvv`, `reservation number`, `digital signature`, `social media handle`, `license plate number`, `cnpj`, `postal code`, `passport_number`, `serial number`, `vehicle registration number`, `credit card brand`, `fax number`, `visa number`, `insurance company`, `identity document number`, `transaction number`, `national health insurance number`, `cvc`, `birth certificate number`, `train ticket number`, `passport expiration date`, and `social_security_number`. ## Links * Paper: https://arxiv.org/abs/2311.08526 * Repository: https://github.com/urchade/GLiNER ```python from gliner import GLiNER model = GLiNER.from_pretrained("urchade/gliner_multi_pii-v1") text = """ Harilala Rasoanaivo, un homme d'affaires local d'Antananarivo, a enregistré une nouvelle société nommée "Rasoanaivo Enterprises" au Lot II M 92 Antohomadinika. Son numéro est le +261 32 22 345 67, et son adresse électronique est harilala.rasoanaivo@telma.mg. Il a fourni son numéro de sécu 501-02-1234 pour l'enregistrement. """ labels = ["work", "booking number", "personally identifiable information", "driver licence", "person", "book", "full address", "company", "actor", "character", "email", "passport number", "Social Security Number", "phone number"] entities = model.predict_entities(text, labels) for entity in entities: print(entity["text"], "=>", entity["label"]) ``` ``` Harilala Rasoanaivo => person Rasoanaivo Enterprises => company Lot II M 92 Antohomadinika => full address +261 32 22 345 67 => phone number harilala.rasoanaivo@telma.mg => email 501-02-1234 => Social Security Number ```