--- base_model: - akjindal53244/Llama-3.1-Storm-8B - Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B library_name: transformers tags: - merge - llama - not-for-all-audiences --- # Llama-3-Umbral-Storm-8B (8K) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64f74b6e6389380c77562762/79tIjC6Ykm4rlwOHa9uzZ.png) RP model, "L3-Umbral-Mind-v2.0" as a base, nearswapped with one of the smartest L3.1 models "Storm". * Warning: Based on Mopey-Mule so it should be negative, don't use this model for any truthful information or advice. * ---->[ GGUF Q8 static](https://huggingface.co/v000000/L3-Umbral-Storm-8B-t0.0001-Q8_0-GGUF) # Thank you mradermacher for the quants! * [GGUFs](https://huggingface.co/mradermacher/L3-Umbral-Storm-8B-t0.0001-GGUF) * [GGUFs imatrix](https://huggingface.co/mradermacher/L3-Umbral-Storm-8B-t0.0001-i1-GGUF) ------------------------------------------------------------------------------- ## merge This is a merge of pre-trained language models. ## Merge Details This model is on the Llama-3 arch with Llama-3.1 merged in, so it has 8k context length. But could possibly be extended slightly with RoPE due to the L3.1 layers. ### Merge Method This model was merged using the NEARSWAP t0.0001 merge algorithm. ### Models Merged The following models were included in the merge: * Base Model: [Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B](https://huggingface.co/Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B) * [akjindal53244/Llama-3.1-Storm-8B](https://huggingface.co/akjindal53244/Llama-3.1-Storm-8B) ### Configuration ```yaml slices: - sources: - model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B layer_range: [0, 32] - model: akjindal53244/Llama-3.1-Storm-8B layer_range: [0, 32] merge_method: nearswap base_model: Casual-Autopsy/L3-Umbral-Mind-RP-v2.0-8B parameters: t: - value: 0.0001 dtype: bfloat16 ``` # Prompt Template: ```bash <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {output}<|eot_id|> ``` Credit to Alchemonaut: ```python def lerp(a, b, t): return a * (1 - t) + b * t def nearswap(v0, v1, t): lweight = np.abs(v0 - v1) with np.errstate(divide='ignore', invalid='ignore'): lweight = np.where(lweight != 0, t / lweight, 1.0) lweight = np.nan_to_num(lweight, nan=1.0, posinf=1.0, neginf=1.0) np.clip(lweight, a_min=0.0, a_max=1.0, out=lweight) return lerp(v0, v1, lweight) ``` Credit to Numbra for idea.