--- language: - de library_name: transformers base_model: google/mT5-base datasets: - DEplain/DEplain-APA-sent metrics: - sari - bleu - bertscore pipeline_tag: text2text-generation --- # Model Card for mT5-base-trimmed_deplain-apa Finetuned mT5-Model for German sentence-level text-simplification. ## Model Details ### Model Description - **Model type:** Encoder-Decoder-Transformer - **Language(s) (NLP):** German - **Finetuned from model:** google/mT5-base - **Task**: Text-Simplification ## Training Details ### Training Data [DEplain/DEplain-APA-sent](https://huggingface.co/datasets/DEplain/DEplain-APA-sent) \ Stodden et al. (2023):[arXiv:2305.18939](arXiv:2305.18939) ### Training Procedure Parameter-efficient Fine-Tuning with LoRA. Vocabulary trimmed to 32.000 most frequent tokens for German. #### Training Hyperparameters * Batch Size: 16 * Epochs: 1 * Learning Rate: 0.001 * Optimizer: Adafactor #### LoRA Hyperparameters * R: 32 * Alpha: 64 * Dropout: 0.1 * Target modules: all linear layers