--- license: mit tags: - generated_from_trainer metrics: - accuracy model-index: - name: mdeberta-v3-base-finetuned-recores results: [] --- # mdeberta-v3-base-finetuned-recores This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6094 - Accuracy: 0.2011 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 3000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.6112 | 1.0 | 1047 | 1.6094 | 0.1901 | | 1.608 | 2.0 | 2094 | 1.6094 | 0.1873 | | 1.6127 | 3.0 | 3141 | 1.6095 | 0.1983 | | 1.6125 | 4.0 | 4188 | 1.6094 | 0.2424 | | 1.6118 | 5.0 | 5235 | 1.6094 | 0.1956 | | 1.6181 | 6.0 | 6282 | 1.6094 | 0.2094 | | 1.6229 | 7.0 | 7329 | 1.6095 | 0.1680 | | 1.6125 | 8.0 | 8376 | 1.6094 | 0.1736 | | 1.6134 | 9.0 | 9423 | 1.6094 | 0.2066 | | 1.6174 | 10.0 | 10470 | 1.6093 | 0.2204 | | 1.6161 | 11.0 | 11517 | 1.6096 | 0.2121 | | 1.6198 | 12.0 | 12564 | 1.6094 | 0.2039 | | 1.6182 | 13.0 | 13611 | 1.6094 | 0.2287 | | 1.6208 | 14.0 | 14658 | 1.6094 | 0.2287 | | 1.6436 | 15.0 | 15705 | 1.6092 | 0.2287 | | 1.6209 | 16.0 | 16752 | 1.6094 | 0.2094 | | 1.6097 | 17.0 | 17799 | 1.6094 | 0.2094 | | 1.6115 | 18.0 | 18846 | 1.6094 | 0.2149 | | 1.6249 | 19.0 | 19893 | 1.6094 | 0.1956 | | 1.6201 | 20.0 | 20940 | 1.6094 | 0.1763 | | 1.6217 | 21.0 | 21987 | 1.6094 | 0.1956 | | 1.6193 | 22.0 | 23034 | 1.6094 | 0.1846 | | 1.6171 | 23.0 | 24081 | 1.6095 | 0.1983 | | 1.6123 | 24.0 | 25128 | 1.6095 | 0.1846 | | 1.6164 | 25.0 | 26175 | 1.6094 | 0.2011 | ### Framework versions - Transformers 4.19.0 - Pytorch 1.10.1+cu102 - Datasets 2.2.1 - Tokenizers 0.12.1