--- license: apache-2.0 tags: - mergekit - merge - solar base_model: - upstage/SOLAR-10.7B-Instruct-v1.0 - NousResearch/Nous-Hermes-2-SOLAR-10.7B model-index: - name: franken-SOLAR-18B-v1.0 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.53 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.45 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.72 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.14 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.53 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 45.79 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0 name: Open LLM Leaderboard --- # vicgalle/franken-SOLAR-18B-v1.0 This is a SOLAR-like model upscaled to 18B. It is a frankenmerge model created using mergekit, alternating layers of Nous-Hermes-2-SOLAR-10.7B and SOLAR-10.7B-Instruct. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fad8602b8423e1d80b8a965/mMyHMuuftG71_o4at5suy.png) Evaluations coming soon! This model has very good writing capabilities (compared to SOLAR-10.7B), specially for role-playing. Quantized GGUF variants here https://huggingface.co/vicgalle/franken-SOLAR-18B-v1.0-GGUF ## Merge Details ### Merge Method This model was merged using the passthrough merge method. ### Models Merged The following models were included in the merge: * [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0) * [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [0, 12] - sources: - model: upstage/SOLAR-10.7B-Instruct-v1.0 layer_range: [6, 18] - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [13, 25] - sources: - model: upstage/SOLAR-10.7B-Instruct-v1.0 layer_range: [19, 31] - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [26, 38] - sources: - model: upstage/SOLAR-10.7B-Instruct-v1.0 layer_range: [32, 44] - sources: - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B layer_range: [39, 48] merge_method: passthrough dtype: float16 ``` ### Usage You can use the provided template: ``` tokenizer = AutoTokenizer.from_pretrained("vicgalle/franken-SOLAR-18B-v1.0") model = AutoModelForCausalLM.from_pretrained("vicgalle/franken-SOLAR-18B-v1.0", torch_dtype=torch.float16, load_in_4bit=True) conversation = [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': USER_PROMPT} ] prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, use_cache=True, max_new_tokens=1024, do_sample=True, temperature=0.8) output_text = tokenizer.decode(outputs[0]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__franken-SOLAR-18B-v1.0) | Metric |Value| |---------------------------------|----:| |Avg. |67.03| |AI2 Reasoning Challenge (25-Shot)|65.53| |HellaSwag (10-Shot) |86.45| |MMLU (5-Shot) |63.72| |TruthfulQA (0-shot) |62.14| |Winogrande (5-shot) |78.53| |GSM8k (5-shot) |45.79|