--- language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: Whisper Tiny English results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Minds 14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.258610624635143 --- # Whisper Tiny English This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Minds 14 dataset. It achieves the following results on the evaluation set: - Loss: 0.4154 - Wer Ortho: 0.2659 - Wer: 0.2586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 4.2901 | 0.33 | 5 | 4.2556 | 0.4220 | 0.2919 | | 4.3552 | 0.67 | 10 | 3.7784 | 0.4226 | 0.2931 | | 3.453 | 1.0 | 15 | 2.9546 | 0.4152 | 0.2907 | | 2.9147 | 1.33 | 20 | 2.4090 | 0.3988 | 0.2931 | | 2.3042 | 1.67 | 25 | 1.7869 | 0.3701 | 0.3001 | | 1.6056 | 2.0 | 30 | 1.1284 | 0.3494 | 0.3012 | | 0.988 | 2.33 | 35 | 0.6892 | 0.3860 | 0.3403 | | 0.6605 | 2.67 | 40 | 0.5611 | 0.3128 | 0.2849 | | 0.4645 | 3.0 | 45 | 0.4982 | 0.3091 | 0.2901 | | 0.4884 | 3.33 | 50 | 0.4640 | 0.2963 | 0.2855 | | 0.404 | 3.67 | 55 | 0.4453 | 0.2884 | 0.2814 | | 0.4745 | 4.0 | 60 | 0.4268 | 0.2762 | 0.2697 | | 0.303 | 4.33 | 65 | 0.4182 | 0.2829 | 0.2720 | | 0.2717 | 4.67 | 70 | 0.4119 | 0.2829 | 0.2750 | | 0.3464 | 5.0 | 75 | 0.4080 | 0.2860 | 0.2761 | | 0.2193 | 5.33 | 80 | 0.4054 | 0.2823 | 0.2750 | | 0.2138 | 5.67 | 85 | 0.4064 | 0.2762 | 0.2680 | | 0.1571 | 6.0 | 90 | 0.4102 | 0.2799 | 0.2715 | | 0.1398 | 6.33 | 95 | 0.4146 | 0.2768 | 0.2697 | | 0.1523 | 6.67 | 100 | 0.4154 | 0.2659 | 0.2586 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3