--- language: fr pipeline_tag: "token-classification" widget: - text: "je voudrais réserver une chambre à paris pour demain et lundi" - text: "d'accord pour l'hôtel à quatre vingt dix euros la nuit" - text: "deux nuits s'il vous plait" - text: "dans un hôtel avec piscine à marseille" tags: - bert - flaubert - natural language understanding - NLU - spoken language understanding - SLU - understanding - MEDIA --- # vpelloin/MEDIA_NLU-flaubert_oral_asr_nb This is a Natural Language Understanding (NLU) model for the French [MEDIA benchmark](https://catalogue.elra.info/en-us/repository/browse/ELRA-S0272/). It maps each input words into outputs concepts tags (76 available). This model is trained using [`nherve/flaubert-oral-asr_nb`](https://huggingface.co/nherve/flaubert-oral-asr_nb) as its inital checkpoint. It obtained 12.24% CER (*lower is better*) in the MEDIA test set, in [our Interspeech 2023 publication](http://doi.org/10.21437/Interspeech.2022-352), using Kaldi ASR transcriptions. ## Available MEDIA NLU models: - [`vpelloin/MEDIA_NLU-flaubert_base_cased`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_base_cased): MEDIA NLU model trained using [`flaubert/flaubert_base_cased`](https://huggingface.co/flaubert/flaubert_base_cased). Obtains 13.20% CER on MEDIA test. - [`vpelloin/MEDIA_NLU-flaubert_base_uncased`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_base_uncased): MEDIA NLU model trained using [`flaubert/flaubert_base_uncased`](https://huggingface.co/flaubert/flaubert_base_uncased). Obtains 12.40% CER on MEDIA test. - [`vpelloin/MEDIA_NLU-flaubert_oral_ft`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_ft): MEDIA NLU model trained using [`nherve/flaubert-oral-ft`](https://huggingface.co/nherve/flaubert-oral-ft). Obtains 11.98% CER on MEDIA test. - [`vpelloin/MEDIA_NLU-flaubert_oral_mixed`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_mixed): MEDIA NLU model trained using [`nherve/flaubert-oral-mixed`](https://huggingface.co/nherve/flaubert-oral-mixed). Obtains 12.47% CER on MEDIA test. - [`vpelloin/MEDIA_NLU-flaubert_oral_asr`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_asr): MEDIA NLU model trained using [`nherve/flaubert-oral-asr`](https://huggingface.co/nherve/flaubert-oral-asr). Obtains 12.43% CER on MEDIA test. - [`vpelloin/MEDIA_NLU-flaubert_oral_asr_nb`](https://huggingface.co/vpelloin/MEDIA_NLU-flaubert_oral_asr_nb): MEDIA NLU model trained using [`nherve/flaubert-oral-asr_nb`](https://huggingface.co/nherve/flaubert-oral-asr_nb). Obtains 12.24% CER on MEDIA test. ## Usage with Pipeline ```python from transformers import pipeline generator = pipeline( model="vpelloin/MEDIA_NLU-flaubert_oral_asr_nb", task="token-classification" ) sentences = [ "je voudrais réserver une chambre à paris pour demain et lundi", "d'accord pour l'hôtel à quatre vingt dix euros la nuit", "deux nuits s'il vous plait", "dans un hôtel avec piscine à marseille" ] for sentence in sentences: print([(tok['word'], tok['entity']) for tok in generator(sentence)]) ``` ## Usage with AutoTokenizer/AutoModel ```python from transformers import ( AutoTokenizer, AutoModelForTokenClassification ) tokenizer = AutoTokenizer.from_pretrained( "vpelloin/MEDIA_NLU-flaubert_oral_asr_nb" ) model = AutoModelForTokenClassification.from_pretrained( "vpelloin/MEDIA_NLU-flaubert_oral_asr_nb" ) sentences = [ "je voudrais réserver une chambre à paris pour demain et lundi", "d'accord pour l'hôtel à quatre vingt dix euros la nuit", "deux nuits s'il vous plait", "dans un hôtel avec piscine à marseille" ] inputs = tokenizer(sentences, padding=True, return_tensors='pt') outputs = model(**inputs).logits print([ [model.config.id2label[i] for i in b] for b in outputs.argmax(dim=-1).tolist() ]) ``` ## Reference If you use this model for your scientific publication, or if you find the resources in this repository useful, please cite the [following paper](http://doi.org/10.21437/Interspeech.2022-352): ``` @inproceedings{pelloin22_interspeech, author={Valentin Pelloin and Franck Dary and Nicolas Hervé and Benoit Favre and Nathalie Camelin and Antoine LAURENT and Laurent Besacier}, title={ASR-Generated Text for Language Model Pre-training Applied to Speech Tasks}, year=2022, booktitle={Proc. Interspeech 2022}, pages={3453--3457}, doi={10.21437/Interspeech.2022-352} } ```