--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - recall - precision model-index: - name: cls-comment-phobert-base-v2-v3.2 results: [] --- # cls-comment-phobert-base-v2-v3.2 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6534 - Accuracy: 0.9222 - F1 Score: 0.9110 - Recall: 0.9115 - Precision: 0.9149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4000 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:------:|:---------:| | 1.8971 | 0.87 | 100 | 1.7443 | 0.4064 | 0.0826 | 0.1429 | 0.0581 | | 1.5979 | 1.73 | 200 | 1.3562 | 0.6147 | 0.2496 | 0.2794 | 0.2703 | | 1.2633 | 2.6 | 300 | 1.0631 | 0.7399 | 0.4779 | 0.4720 | 0.5906 | | 1.0047 | 3.46 | 400 | 0.8834 | 0.8255 | 0.5990 | 0.6173 | 0.5876 | | 0.8689 | 4.33 | 500 | 0.8139 | 0.8434 | 0.6169 | 0.6459 | 0.5936 | | 0.7901 | 5.19 | 600 | 0.7564 | 0.8659 | 0.6766 | 0.6790 | 0.7339 | | 0.7217 | 6.06 | 700 | 0.7114 | 0.8886 | 0.8211 | 0.8018 | 0.8731 | | 0.6635 | 6.93 | 800 | 0.6800 | 0.9041 | 0.8787 | 0.8775 | 0.8829 | | 0.6119 | 7.79 | 900 | 0.6681 | 0.9073 | 0.8870 | 0.8844 | 0.8917 | | 0.5888 | 8.66 | 1000 | 0.6620 | 0.9130 | 0.8948 | 0.8961 | 0.8975 | | 0.5721 | 9.52 | 1100 | 0.6746 | 0.9098 | 0.8931 | 0.9058 | 0.8849 | | 0.5521 | 10.39 | 1200 | 0.6434 | 0.9231 | 0.9061 | 0.9038 | 0.9086 | | 0.5451 | 11.26 | 1300 | 0.6397 | 0.9231 | 0.9095 | 0.9042 | 0.9162 | | 0.5315 | 12.12 | 1400 | 0.6552 | 0.9174 | 0.9044 | 0.9128 | 0.8993 | | 0.5182 | 12.99 | 1500 | 0.6483 | 0.9206 | 0.9009 | 0.9063 | 0.8973 | | 0.5078 | 13.85 | 1600 | 0.6534 | 0.9222 | 0.9110 | 0.9115 | 0.9149 | | 0.498 | 14.72 | 1700 | 0.6493 | 0.9255 | 0.9080 | 0.9016 | 0.9152 | | 0.4998 | 15.58 | 1800 | 0.6451 | 0.9244 | 0.9073 | 0.9146 | 0.9009 | | 0.49 | 16.45 | 1900 | 0.6693 | 0.9174 | 0.9018 | 0.9039 | 0.9019 | | 0.4882 | 17.32 | 2000 | 0.6501 | 0.9236 | 0.9057 | 0.9101 | 0.9023 | | 0.4859 | 18.18 | 2100 | 0.6591 | 0.9258 | 0.9110 | 0.9126 | 0.9113 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2