--- language: - en tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: baseline-ft-mrpc-IRoberta-b-8bit results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8970588235294118 - name: F1 type: f1 value: 0.9257950530035336 --- # baseline-ft-mrpc-IRoberta-b-8bit This model is a fine-tuned version of [vuiseng9/baseline-ft-mrpc-IRoberta-b-unquantized](https://huggingface.co/vuiseng9/baseline-ft-mrpc-IRoberta-b-unquantized) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.3871 - Accuracy: 0.8971 - F1: 0.9258 - Combined Score: 0.9114 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 12.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.0021 | 1.0 | 230 | 0.4017 | 0.8848 | 0.9147 | 0.8998 | | 0.0026 | 2.0 | 460 | 0.4105 | 0.8873 | 0.9173 | 0.9023 | | 0.0026 | 3.0 | 690 | 0.3707 | 0.8946 | 0.9236 | 0.9091 | | 0.0037 | 4.0 | 920 | 0.3893 | 0.8946 | 0.9228 | 0.9087 | | 1.324 | 5.0 | 1150 | 0.3871 | 0.8897 | 0.9204 | 0.9050 | | 0.0227 | 6.0 | 1380 | 0.3951 | 0.8897 | 0.9201 | 0.9049 | | 0.0081 | 7.0 | 1610 | 0.3818 | 0.8824 | 0.9155 | 0.8989 | | 0.0054 | 8.0 | 1840 | 0.3902 | 0.8873 | 0.9181 | 0.9027 | | 0.0383 | 9.0 | 2070 | 0.3659 | 0.8922 | 0.9225 | 0.9073 | | 0.3861 | 10.0 | 2300 | 0.4260 | 0.8652 | 0.9030 | 0.8841 | | 0.0028 | 11.0 | 2530 | 0.3619 | 0.8946 | 0.9234 | 0.9090 | | 0.0957 | 12.0 | 2760 | 0.3871 | 0.8971 | 0.9258 | 0.9114 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3