--- license: apache-2.0 tags: - generated_from_trainer - whisper-event datasets: - vumichien/preprocessed_jsut_jsss_css10_common_voice_11 metrics: - wer - cer base_model: openai/whisper-large-v2 model-index: - name: openai/whisper-large-v2 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 ja type: mozilla-foundation/common_voice_11_0 config: ja split: test args: ja metrics: - type: wer value: 7.6453 name: Wer - type: cer value: 4.7187 name: Cer - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: ja_jp split: test metrics: - type: wer value: 11.69 name: WER - type: cer value: 7.12 name: CER --- # openai/whisper-large-v2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the vumichien/preprocessed_jsut_jsss_css10_common_voice_11 dataset. It achieves the following results on the evaluation set: - Loss: 0.2284 - Wer: 7.6453 - Cer: 4.7187 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:| | 0.1912 | 0.55 | 1000 | 0.1828 | 11.2314 | 7.0357 | | 0.1329 | 1.1 | 2000 | 0.1618 | 9.4172 | 5.9028 | | 0.0912 | 1.65 | 3000 | 0.1616 | 8.9257 | 5.4711 | | 0.0576 | 2.2 | 4000 | 0.1664 | 8.5861 | 5.3055 | | 0.0449 | 2.74 | 5000 | 0.1642 | 8.4510 | 5.2930 | | 0.02 | 3.29 | 6000 | 0.1799 | 8.1537 | 5.0354 | | 0.019 | 3.84 | 7000 | 0.1801 | 8.125 | 5.0827 | | 0.0067 | 4.39 | 8000 | 0.2003 | 7.8412 | 4.8133 | | 0.006 | 4.94 | 9000 | 0.2071 | 7.5811 | 4.7023 | | 0.0022 | 5.49 | 10000 | 0.2284 | 7.6453 | 4.7187 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2