--- base_model: stabilityai/stable-diffusion-2-1 library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora inference: true datasets: - vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000 --- # LoRA text2image fine-tuning - vwu142/pokemon-lora These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were fine-tuned on the vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000 dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ## Intended uses & limitations #### How to use ```python # Importing LoRA Weights from huggingface_hub import model_info # LoRA weights ~3 MB model_path = "vwu142/pokemon-lora" # Getting Base Model info = model_info(model_path) model_base = info.cardData["base_model"] print(model_base) # Importing the Diffusion model with the weights added import torch from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.unet.load_attn_procs(model_path) pipe.to("cuda") ``` ## Training details The weights were trained on the Free GPU provided in Google Collab. The data it was trained on comes from this dataset: https://huggingface.co/datasets/vwu142/Pokemon-Card-Plus-Pokemon-Actual-Image-And-Captions-13000 It has images of pokemon cards and pokemon with various descriptions of the image. This was the parameters and the script used to train the weights ```python !accelerate launch --mixed_precision="fp16" diffusers/examples/text_to_image/train_text_to_image_lora.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --mixed_precision="fp16" \ --dataset_name=$DATASET_NAME --caption_column="caption"\ --dataloader_num_workers=8 \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --max_train_steps=1500 \ --learning_rate=1e-04 \ --max_grad_norm=1 \ --lr_scheduler="cosine" --lr_warmup_steps=0 \ --output_dir=${OUTPUT_DIR} \ --push_to_hub \ --hub_model_id=${HUB_MODEL_ID} \ --report_to=wandb \ --checkpointing_steps=500 \ --validation_prompt="Ludicolo" \ --seed=1337 ```