--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall base_model: microsoft/deberta-v3-base model-index: - name: deberta-v3-base-isarcasm results: - task: type: text-classification dataset: name: iSarcasm type: isarcasm split: test metrics: - type: f1 value: 0.47887323943661975 name: f1 - type: accuracy value: 0.8331454340473506 name: accuracy - type: recall value: 0.43312101910828027 name: recall - type: precision value: 0.5354330708661418 name: precision --- # deberta-v3-base-isarcasm This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3693 - Accuracy: 0.8331 - F1: 0.4789 - Precision: 0.5354 - Recall: 0.4331 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 215 | 0.7833 | 0.8 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 430 | 1.1913 | 0.8 | 0.0 | 0.0 | 0.0 | | 0.577 | 3.0 | 645 | 1.5866 | 0.7714 | 0.2 | 0.25 | 0.1667 | | 0.577 | 4.0 | 860 | 2.3199 | 0.8 | 0.2222 | 0.3333 | 0.1667 | | 0.2047 | 5.0 | 1075 | 2.4911 | 0.8 | 0.2222 | 0.3333 | 0.1667 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3