--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: deberta-v3-base-p-tuning-isarcasm results: [] --- # deberta-v3-base-p-tuning-isarcasm This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6620 - Accuracy: 0.4476 - F1: 0.3603 - Precision: 0.2266 - Recall: 0.8790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 108 | 0.6889 | 0.3143 | 0.2941 | 0.1786 | 0.8333 | | No log | 2.0 | 216 | 0.7020 | 0.8286 | 0.0 | 0.0 | 0.0 | | No log | 3.0 | 324 | 0.6725 | 0.6286 | 0.2353 | 0.1818 | 0.3333 | | No log | 4.0 | 432 | 0.7169 | 0.1714 | 0.2927 | 0.1714 | 1.0 | | 0.7087 | 5.0 | 540 | 0.6925 | 0.5429 | 0.3846 | 0.25 | 0.8333 | | 0.7087 | 6.0 | 648 | 0.6991 | 0.1714 | 0.2927 | 0.1714 | 1.0 | | 0.7087 | 7.0 | 756 | 0.6780 | 0.8286 | 0.0 | 0.0 | 0.0 | | 0.7087 | 8.0 | 864 | 0.6851 | 0.8286 | 0.0 | 0.0 | 0.0 | | 0.7087 | 9.0 | 972 | 0.6712 | 0.8286 | 0.0 | 0.0 | 0.0 | | 0.7055 | 10.0 | 1080 | 0.6767 | 0.3143 | 0.3333 | 0.2 | 1.0 | | 0.7055 | 11.0 | 1188 | 0.6720 | 0.5714 | 0.4000 | 0.2632 | 0.8333 | | 0.7055 | 12.0 | 1296 | 0.6710 | 0.3714 | 0.3529 | 0.2143 | 1.0 | | 0.7055 | 13.0 | 1404 | 0.6676 | 0.4857 | 0.3077 | 0.2 | 0.6667 | | 0.6916 | 14.0 | 1512 | 0.6735 | 0.3714 | 0.3125 | 0.1923 | 0.8333 | | 0.6916 | 15.0 | 1620 | 0.6762 | 0.3714 | 0.3529 | 0.2143 | 1.0 | | 0.6916 | 16.0 | 1728 | 0.6642 | 0.6286 | 0.3158 | 0.2308 | 0.5 | | 0.6916 | 17.0 | 1836 | 0.6609 | 0.5143 | 0.32 | 0.2105 | 0.6667 | | 0.6916 | 18.0 | 1944 | 0.6632 | 0.4571 | 0.2963 | 0.1905 | 0.6667 | | 0.6798 | 19.0 | 2052 | 0.6640 | 0.4 | 0.2759 | 0.1739 | 0.6667 | | 0.6798 | 20.0 | 2160 | 0.6644 | 0.4 | 0.2759 | 0.1739 | 0.6667 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.1.1+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3