--- license: mit base_model: indobenchmark/indobert-large-p1 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: indobert-large-p1-twitter-indonesia-sarcastic results: [] --- # indobert-large-p1-twitter-indonesia-sarcastic This model is a fine-tuned version of [indobenchmark/indobert-large-p1](https://huggingface.co/indobenchmark/indobert-large-p1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3207 - Accuracy: 0.8643 - F1: 0.7160 - Precision: 0.7480 - Recall: 0.6866 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5836 | 1.0 | 59 | 0.4153 | 0.8060 | 0.5738 | 0.6364 | 0.5224 | | 0.3766 | 2.0 | 118 | 0.3353 | 0.8433 | 0.5962 | 0.8378 | 0.4627 | | 0.2476 | 3.0 | 177 | 0.3114 | 0.8619 | 0.6942 | 0.7778 | 0.6269 | | 0.1356 | 4.0 | 236 | 0.3279 | 0.8694 | 0.7328 | 0.75 | 0.7164 | | 0.0536 | 5.0 | 295 | 0.4265 | 0.8582 | 0.7164 | 0.7164 | 0.7164 | | 0.0157 | 6.0 | 354 | 0.6448 | 0.8619 | 0.6667 | 0.8409 | 0.5522 | | 0.0076 | 7.0 | 413 | 0.5739 | 0.8619 | 0.7218 | 0.7273 | 0.7164 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0