--- language: - en library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:100K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 1024 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("w601sxs/b1ade-embed-distilled-from-gte-large-en-v1.5") # Run inference sentences = [ 'A man is walking', 'The man is going for a walk.', 'The station opened on 1 December 1896.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6738 | | **spearman_cosine** | **0.7347** | | pearson_manhattan | 0.7006 | | spearman_manhattan | 0.7089 | | pearson_euclidean | 0.7017 | | spearman_euclidean | 0.7102 | | pearson_dot | 0.7336 | | spearman_dot | 0.751 | | pearson_max | 0.7336 | | spearman_max | 0.751 | #### Knowledge Distillation * Evaluated with [MSEEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.MSEEvaluator) | Metric | Value | |:-----------------|:-------------| | **negative_mse** | **-21.5451** | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.6772 | | **spearman_cosine** | **0.7311** | | pearson_manhattan | 0.7077 | | spearman_manhattan | 0.7121 | | pearson_euclidean | 0.7071 | | spearman_euclidean | 0.7115 | | pearson_dot | 0.7026 | | spearman_dot | 0.6949 | | pearson_max | 0.7077 | | spearman_max | 0.7311 | ## Training Details ### Training Dataset #### sentence-transformers/wikipedia-en-sentences * Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422) * Size: 200,000 training samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------| | type | string | list | | details | | | * Samples: | sentence | label | |:---------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | [-0.5300068259239197, 0.07807248830795288, 0.304331511259079, 0.3473575711250305, 0.3993019461631775, ...] | | Children smiling and waving at camera | [-0.3918086886405945, 0.514893114566803, 0.38178062438964844, -0.29475438594818115, -0.07984668761491776, ...] | | A boy is jumping on skateboard in the middle of a red bridge. | [-0.7029106020927429, 0.08336036652326584, 0.7830113768577576, -0.7898964285850525, 0.27573251724243164, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Evaluation Dataset #### sentence-transformers/wikipedia-en-sentences * Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422) * Size: 10,000 evaluation samples * Columns: sentence and label * Approximate statistics based on the first 1000 samples: | | sentence | label | |:--------|:----------------------------------------------------------------------------------|:--------------------------------------| | type | string | list | | details | | | * Samples: | sentence | label | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------| | Two women are embracing while holding to go packages. | [-0.5707114338874817, -0.5041555762290955, -1.3100334405899048, 0.5848354697227478, -0.3452240526676178, ...] | | Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | [-0.4810343384742737, 0.034435614943504333, -0.669406533241272, -0.16233624517917633, 0.5214978456497192, ...] | | A man selling donuts to a customer during a world exhibition event held in the city of Angeles | [-0.2572114169597626, 0.19592943787574768, -0.6243088841438293, -0.4749126136302948, -0.6737443804740906, ...] | * Loss: [MSELoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#mseloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 0.0001 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 0.0001 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:----------:|:-------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:| | 0.1279 | 100 | 0.4302 | - | - | - | - | | 0.2558 | 200 | 0.2398 | - | - | - | - | | 0.3836 | 300 | 0.1918 | - | - | - | - | | 0.5115 | 400 | 0.1683 | - | - | - | - | | **0.6394** | **500** | **0.1539** | **0.2155** | **-21.5451** | **0.7347** | **-** | | 0.7673 | 600 | 0.1456 | - | - | - | - | | 0.8951 | 700 | 0.1393 | - | - | - | - | | 1.0 | 782 | - | - | - | - | 0.7311 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.6 - Sentence Transformers: 3.0.0 - Transformers: 4.41.1 - PyTorch: 2.3.0+cu121 - Accelerate: 0.30.1 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MSELoss ```bibtex @inproceedings{reimers-2020-multilingual-sentence-bert, title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2020", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/2004.09813", } ```