--- license: bsd-3-clause tags: - generated_from_trainer metrics: - accuracy model-index: - name: ast_12-finetuned-ICBHI results: [] --- # ast_12-finetuned-ICBHI This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5461 - Accuracy: 0.5550 - Sensitivity: 0.3466 - Specificity: 0.7104 - Score: 0.5285 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Sensitivity | Specificity | Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:-----------:|:------:| | 0.7428 | 1.0 | 259 | 1.2162 | 0.5365 | 0.3840 | 0.6502 | 0.5171 | | 0.7004 | 2.0 | 518 | 1.2543 | 0.5220 | 0.3364 | 0.6603 | 0.4984 | | 0.584 | 3.0 | 777 | 1.2605 | 0.5191 | 0.3662 | 0.6331 | 0.4996 | | 0.2524 | 4.0 | 1036 | 1.5461 | 0.5550 | 0.3466 | 0.7104 | 0.5285 | | 0.0708 | 5.0 | 1295 | 1.9865 | 0.5387 | 0.3407 | 0.6863 | 0.5135 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3