--- base_model: ylacombe/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: w2v-fine-tune-test-no-punct4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: tr split: test args: tr metrics: - name: Wer type: wer value: 0.888 --- # w2v-fine-tune-test-no-punct4 This model is a fine-tuned version of [ylacombe/w2v-bert-2.0](https://huggingface.co/ylacombe/w2v-bert-2.0) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.0213 - Wer: 0.888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-----:| | 5.5721 | 1.54 | 20 | 3.5316 | 1.0 | | 3.3513 | 3.08 | 40 | 3.3113 | 1.0 | | 2.9765 | 4.62 | 60 | 3.1604 | 1.016 | | 2.0468 | 6.15 | 80 | 2.5162 | 1.02 | | 0.8977 | 7.69 | 100 | 1.4944 | 1.008 | | 0.3831 | 9.23 | 120 | 1.0213 | 0.888 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1