--- tags: - merge - mergekit - lazymergekit - ChaoticNeutrals/Eris_Remix_7B - Virt-io/Erebus-Holodeck-7B base_model: - ChaoticNeutrals/Eris_Remix_7B - Virt-io/Erebus-Holodeck-7B license: cc-by-nc-4.0 --- # OxytocinErosEngineeringF1-7B-slerp OxytocinErosEngineeringF1-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [ChaoticNeutrals/Eris_Remix_7B](https://huggingface.co/ChaoticNeutrals/Eris_Remix_7B) * [Virt-io/Erebus-Holodeck-7B](https://huggingface.co/Virt-io/Erebus-Holodeck-7B) Thanks to MraderMarcher for providing GGUF quants-> [mradermacher/OxytocinErosEngineeringF1-7B-slerp-GGUF](https://huggingface.co/mradermacher/OxytocinErosEngineeringF1-7B-slerp-GGUF) # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_weezywitasneezy__OxytocinErosEngineeringF1-7B-slerp) | Metric |Value| |---------------------------------|----:| |Avg. |69.22| |AI2 Reasoning Challenge (25-Shot)|67.15| |HellaSwag (10-Shot) |86| |MMLU (5-Shot) |64.73| |TruthfulQA (0-shot) |54.54| |Winogrande (5-shot) |81.14| |GSM8k (5-shot) |61.79| ## 🧩 Configuration ```yaml slices: - sources: - model: ChaoticNeutrals/Eris_Remix_7B layer_range: [0, 32] - model: Virt-io/Erebus-Holodeck-7B layer_range: [0, 32] merge_method: slerp base_model: ChaoticNeutrals/Eris_Remix_7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "weezywitasneezy/OxytocinErosEngineeringF1-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```