--- license: apache-2.0 base_model: - mistralai/Mistral-Nemo-Base-2407 language: - en - ko - ja - zh datasets: - 4DR1455/finance_questions - Aratako/Synthetic-JP-Conversations-Magpie-Nemotron-4-10k - Aratako/Synthetic-JP-EN-Coding-Dataset-Magpie-69k - Aratako/Synthetic-Japanese-Roleplay-NSFW-Claude-3.5s-10.5k-formatted - BCCard/BCCard-Finance-Kor-QnA - CarrotAI/ko-code-alpaca-QA - ChuGyouk/AI_healthcare_QA_samples_Sonnet3.5 - DavidLanz/medical_instruction - Dusker/lawyer-llama - Gryphe/Sonnet3.5-Charcard-Roleplay - HAERAE-HUB/qarv-instruct-ko - HachiML/alpaca_jp_math - Magpie-Align/Magpie-Llama-3.1-Pro-MT-300K-v0.1 - Magpie-Align/Magpie-Qwen2-Pro-200K-Chinese - beomi/KoAlpaca-v1.1a - codefuse-ai/Evol-instruction-66k - frankminors123/belle-math-zh - gbharti/wealth-alpaca_lora - iam-ajaymeena/Self-Instruct-Japanese-Elzya-13B - jihye-moon/LawQA-Ko - jondurbin/gutenberg-dpo-v0.1 - junyeong-nero/kin_med_100K_edited - kyujinpy/KOR-OpenOrca-Platypus-v3 - lavita/medical-qa-datasets - microsoft/orca-math-word-problems-200k - neural-bridge/rag-dataset-12000 - p1atdev/ichikara-instruction - qiaojin/PubMedQA - shibing624/roleplay-zh-sharegpt-gpt4-data - team-hatakeyama-phase2/AutoMultiTurnByCalm3-22B-Corrected-reformatted - ymoslem/Law-StackExchange - zzunyang/LawQA_LawSee --- # Mistral-Nemo-NT-Ko-12B-sft ## Description **Mistral-Nemo-NT-Ko-12B-sft** is an instruction-tuned version of [*mistralai/Mistral-Nemo-Base-2407*](https://huggingface.co/mistralai/Mistral-Nemo-Base-2407), fine-tuned across four languages: English, Korean, Chinese, and Japanese. The primary goals of this model are **language alignment**, **cross-lingual knowledge transfer** and **ChatML formatting**. This is an intermediate version since preference optimization has not yet been applied. ## Features - The base model supports a context length of 128K, while I fine-tuned this model with an 8K context size. - The model follows to the input language unless the user explicitly specifies an output language (If the language is set by a system role, it may be ignored). - Answer length tends to vary by language: English responses are generally longer than average, while Korean responses tend to be shorter. The behavior for Japanese and Chinese is still under observation. - Recommended temperature settings: 0.3 to 0.7. # Evaluation ## LogicKor | 모델 | 방법 | 추론 | 수학 | 글쓰기 | 코딩 | 이해 | 문법 | 싱글턴 | 멀티턴 | 총점 | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | |Mistral-Nemo-NT-Ko-12B-sft| cot-1-shot |7.36 | 6.57 | 8.71 | 8.57 | 9.57 | 6.43 | 7.81 | 7.93 | **7.87** | |Mistral-Nemo-NT-Ko-12B-sft| 1-shot | 9.00 | 5.71 | 7.93 | 8.29 | 7.93 | 5.21 | 7.29 | 7.40 | 7.35 | | Mistral Nemo | 1-shot | 5.00, | 6.50 | 6.86 | 8.07 | 7.64 | 8.43 | 7.60 | 6.57 |7.08| | Mistral Nemo | cot-1-shot | 5.43, | 6.86 | 6.07 | 7.57 | 5.86 | 7.57 | 7.50 | 5.62 |6.56| |Mistral-Nemo-NT-Ko-12B-sft| default | 6.00 | 4.93 | 5.43 | 7.14 | 9.71 | 4.00 | 6.45 | 5.95 | 6.20 | | Mistral Nemo | default | 0.43, | 7.64 | 6.21 | 7.14 | 6.79 | 7.21 | 6.26 | 5.55 |5.90| ## MT-Bench | Model | First | Second | Average | | --- | --- | --- | --- | |Mistral-Nemo-NT-Ko-12B-sft| 8.39 | 7.99 | 8.19 | \* ```judge-model: GPT-4``` ## Language-Confusion(Korean Only) | Model | Monolingual-LPR | Monolingual-WPR | Crosslingual-LPR | Crosslingual-WPR | | --- | --- | --- | --- | --- | |Mistral-Nemo-NT-Ko-12B-sft| 100.00% | 99.00% | 87.51% | 96.96% | |Mistral-Nemo-Instruct-2407 | 90.72% | 93.18% | 46.75% | 92.84% | |Meta-Llama-3.1-8B-Instruct | 99.00% | 96.97% | 91.45% | 93.01% | |gemma-2-9b-it | 100.00% | 98.00% | 87.93% | 95.58% | example: ``` <|im_start|>system You are a helpful AI assistant.<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` *I trained Mistral-Nemo-NT-Ko-12B with various system prompt from dozens of dataset. You can chat with/without your system prompt.* # Dataset [werty1248/multilingual-instruct-balanced](https://huggingface.co/datasets/werty1248/multilingual-instruct-balanced) # Training Details - GPU: 8xA40 - epoch: 3 - total batch size: 8 - learning rate: 7e-6 - weight decay: 0.01 [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-Nemo-Base-2407 model_type: MistralForCausalLM tokenizer_config: nothingiisreal/MN-12B-Celeste-V1.9 ##axolotl-ai-co/Mistral-Nemo-Base-2407-chatml makes error, why? tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: false strict: false chat_template: chatml datasets: - path: werty1248/multilingual-instruct-balanced type: sharegpt chat_template: chatml dataset_prepared_path: ./data_preparation output_dir: /workspace/data hf_use_auth_token: true sequence_len: 8192 sample_packing: true pad_to_sequence_len: true wandb_project: #wandb_entity: #wandb_watch: wandb_name: #wandb_log_model: gradient_accumulation_steps: 1 ## total_batch = 8 micro_batch_size: 1 num_epochs: 3 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.000007 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 1000 evals_per_epoch: 1 eval_table_size: save_steps: 1000 debug: deepspeed: deepspeed_configs/zero3_bf16.json weight_decay: 0.01 special_tokens: pad_token: ```

- Training loss ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6629154d55d7c289634b8c5d/Xcat10ejYX1nU4cH94vJF.png)