--- license: apache-2.0 --- KEPTlongfomer pretrained using [contrastive learning](https://arxiv.org/pdf/2210.03304.pdf). First, The model was first inited from [clinical longformer](https://huggingface.co/yikuan8/Clinical-Longformer). And then pretrained with Hierarchical Self-Alignment Pretrainumls (HSAP) using Knowledge Graph UMLS. This includes (a) Hierarchy, (b) Synonym, (c) Abbreviation. For more info, see section 3.3 in [paper](https://arxiv.org/pdf/2210.03304.pdf). See [here](https://github.com/whaleloops/KEPT/tree/rerank300) for how to use this on auto ICD coding. With the following result: | Metric | Score | | ------------- | ------------- | |rec_micro| =0.5729403619819988| |rec_macro| =0.11342156911120573| |rec_at_8| =0.4094837705486378| |rec_at_75| =0.8470734920535119| |rec_at_50| =0.8005338782352| |rec_at_5| =0.2891628170355805| |rec_at_15| =0.5768778119750537| |prec_micro| =0.6411968713105065| |prec_macro| =0.12227610414493029| |prec_at_8| =0.7760972716488731| |prec_at_75| =0.197504942665085| |prec_at_50| =0.2768090154211151| |prec_at_5| =0.8483392645314354| |prec_at_15| =0.6178529062870699| |f1_micro| =0.6051499904242899| |f1_macro| =0.11768251595637802| |f1_at_8| =0.536107150495997| |f1_at_75| =0.32032290907137506| |f1_at_50| =0.411373195944102| |f1_at_5| =0.43131028155283435| |f1_at_15| =0.5966627077602488| |auc_micro| =0.9651754312635265| |auc_macro| =0.8566590059725866| |acc_micro| =0.43384592341105344| |acc_macro| =0.08639139221100567| A sister model is available [here](https://huggingface.co/whaleloops/KEPTlongformer-PMM3/).