--- language: - zh license: apache-2.0 base_model: whucedar/zh-CN-model tags: - hf-asr-leaderboard - generated_from_trainer datasets: - whucedar/retrain_jiaozhu_50 metrics: - wer model-index: - name: zh-CN-2-model - whucedar results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: retrain_jiaozhu_50 type: whucedar/retrain_jiaozhu_50 args: 'config: zh, split: test' metrics: - name: Wer type: wer value: 13.333333333333334 --- # zh-CN-2-model - whucedar This model is a fine-tuned version of [whucedar/zh-CN-model](https://huggingface.co/whucedar/zh-CN-model) on the retrain_jiaozhu_50 dataset. It achieves the following results on the evaluation set: - Loss: 0.0166 - Wer: 13.3333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 200 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0001 | 33.3333 | 100 | 0.0166 | 13.3333 | | 0.0 | 66.6667 | 200 | 0.0166 | 13.3333 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1