# -*- coding: utf-8 -*- """ Created on Sun Sep 15 18:27:17 2024 @author: salikha4 """ import os import csv import json import shutil import random import argparse from datetime import datetime import pandas as pd import time import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader, TensorDataset from torch.optim import Adam import numpy as np #from lwm_model import LWM, load_model import warnings warnings.filterwarnings('ignore') from input_preprocess import * # Device configuration device_idx_ds = 3 device = torch.device(f'cuda:{device_idx_ds}' if torch.cuda.is_available() else "cpu") if torch.cuda.is_available(): torch.cuda.empty_cache() # Folders # MODELS_FOLDER = 'models/' def dataset_gen(preprocessed_chs, input_type, scenario_idxs, lwm_model): if input_type in ['cls_emb', 'channel_emb']: dataset = prepare_for_LWM(preprocessed_chs, device) elif input_type == 'raw': dataset = create_raw_dataset(preprocessed_chs, device) if input_type in ['cls_emb','channel_emb']: # model = LWM().to(device) # ckpt_name = 'model_weights.pth' # ckpt_path = os.path.join(MODELS_FOLDER, ckpt_name) # lwm_model = load_model(model, ckpt_path, device) # print(f"Model loaded successfully on {device}") # Process data through LWM lwm_loss, embedding_data = evaluate(lwm_model, dataset) print(f'LWM loss: {lwm_loss:.4f}') if input_type == 'cls_emb': embedding_data = embedding_data[:, 0] elif input_type == 'channel_emb': embedding_data = embedding_data[:, 1:] dataset = embedding_data.float() return dataset def prepare_for_LWM(data, device, batch_size=64, shuffle=False): input_ids, masked_tokens, masked_pos = zip(*data) input_ids_tensor = torch.tensor(input_ids, device=device).float() masked_tokens_tensor = torch.tensor(masked_tokens, device=device).float() masked_pos_tensor = torch.tensor(masked_pos, device=device).long() dataset = TensorDataset(input_ids_tensor, masked_tokens_tensor, masked_pos_tensor) return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle) def create_raw_dataset(data, device): """Create a dataset for raw channel data.""" input_ids, _, _ = zip(*data) input_data = torch.tensor(input_ids, device=device)[:, 1:] return input_data.float() def label_gen(task, data, scenario, n_beams=64): idxs = np.where(data['user']['LoS'] != -1)[0] if task == 'LoS/NLoS Classification': label = data['user']['LoS'][idxs] elif task == 'Beam Prediction': parameters, row_column_users, n_ant_bs, n_ant_ue, n_subcarriers = get_parameters(scenario) n_users = len(data['user']['channel']) n_subbands = 1 fov = 120 # Setup Beamformers beam_angles = np.around(np.arange(-fov/2, fov/2+.1, fov/(n_beams-1)), 2) F1 = np.array([steering_vec(parameters['bs_antenna']['shape'], phi=azi*np.pi/180, kd=2*np.pi*parameters['bs_antenna']['spacing']).squeeze() for azi in beam_angles]) full_dbm = np.zeros((n_beams, n_subbands, n_users), dtype=float) for ue_idx in tqdm(range(n_users), desc='Computing the channel for each user'): if data['user']['LoS'][ue_idx] == -1: full_dbm[:,:,ue_idx] = np.nan else: chs = F1 @ data['user']['channel'][ue_idx] full_linear = np.abs(np.mean(chs.squeeze().reshape((n_beams, n_subbands, -1)), axis=-1)) full_dbm[:,:,ue_idx] = np.around(20*np.log10(full_linear) + 30, 1) best_beams = np.argmax(np.mean(full_dbm,axis=1), axis=0) best_beams = best_beams.astype(float) best_beams[np.isnan(full_dbm[0,0,:])] = np.nan max_bf_pwr = np.max(np.mean(full_dbm,axis=1), axis=0) label = best_beams[idxs] return label.astype(int) def steering_vec(array, phi=0, theta=0, kd=np.pi): # phi = azimuth # theta = elevation idxs = DeepMIMOv3.ant_indices(array) resp = DeepMIMOv3.array_response(idxs, phi, theta+np.pi/2, kd) return resp / np.linalg.norm(resp) def evaluate(model, dataloader): model.eval() running_loss = 0.0 outputs = [] criterionMCM = nn.MSELoss() with torch.no_grad(): for batch in dataloader: input_ids = batch[0] masked_tokens = batch[1] masked_pos = batch[2] logits_lm, output = model(input_ids, masked_pos) output_batch_preproc = output outputs.append(output_batch_preproc) loss_lm = criterionMCM(logits_lm, masked_tokens) loss = loss_lm/torch.var(masked_tokens) running_loss += loss.item() average_loss = running_loss / len(dataloader) output_total = torch.cat(outputs, dim=0) return average_loss, output_total def label_prepend(deepmimo_data, preprocessed_chs, task, scenario_idxs, n_beams=64): labels = [] for scenario_idx in scenario_idxs: scenario_name = scenarios_list()[scenario_idx] # data = DeepMIMO_data_gen(scenario_name) data = deepmimo_data[scenario_idx] labels.extend(label_gen(task, data, scenario_name, n_beams=n_beams)) preprocessed_chs = [preprocessed_chs[i] + [labels[i]] for i in range(len(preprocessed_chs))] return preprocessed_chs