import torch import torch.nn as nn import torch.nn.functional as F import numpy as np ELEMENT_LENGTH = 16 D_MODEL = 64 MAX_LEN = 129 N_LAYERS = 12 N_HEADS = 12 D_FF = D_MODEL * 4 D_K = D_MODEL // N_HEADS D_V = D_MODEL // N_HEADS DROPOUT = 0.1 class LayerNormalization(nn.Module): def __init__(self, d_model: int, eps: float = 1e-6) -> None: super().__init__() self.eps = eps self.alpha = nn.Parameter(torch.ones(d_model)) self.bias = nn.Parameter(torch.zeros(d_model)) def forward(self, x): mean = x.mean(dim=-1, keepdim=True) std = x.std(dim=-1, keepdim=True) return self.alpha * (x - mean) / (std + self.eps) + self.bias class Embedding(nn.Module): def __init__(self, element_length, d_model, max_len): super().__init__() self.element_length = element_length self.d_model = d_model self.proj = nn.Linear(element_length, d_model) self.pos_embed = nn.Embedding(max_len, d_model) self.norm = LayerNormalization(d_model) def forward(self, x): seq_len = x.size(1) pos = torch.arange(seq_len, dtype=torch.long, device=x.device) pos = pos.unsqueeze(0).expand_as(x[:, :, 0]) tok_emb = self.proj(x.float()) embedding = tok_emb + self.pos_embed(pos) return self.norm(embedding) class ScaledDotProductAttention(nn.Module): def __init__(self): super().__init__() def forward(self, Q, K, V): scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(D_K) attn = F.softmax(scores, dim=-1) context = torch.matmul(attn, V) return context, attn class MultiHeadAttention(nn.Module): def __init__(self): super().__init__() self.W_Q = nn.Linear(D_MODEL, D_K * N_HEADS) self.W_K = nn.Linear(D_MODEL, D_K * N_HEADS) self.W_V = nn.Linear(D_MODEL, D_V * N_HEADS) self.linear = nn.Linear(N_HEADS * D_V, D_MODEL) self.norm = LayerNormalization(D_MODEL) self.dropout = nn.Dropout(DROPOUT) def forward(self, Q, K, V): residual, batch_size = Q, Q.size(0) q_s = self.W_Q(Q).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2) k_s = self.W_K(K).view(batch_size, -1, N_HEADS, D_K).transpose(1, 2) v_s = self.W_V(V).view(batch_size, -1, N_HEADS, D_V).transpose(1, 2) context, attn = ScaledDotProductAttention()(q_s, k_s, v_s) output = context.transpose(1, 2).contiguous().view(batch_size, -1, N_HEADS * D_V) output = self.linear(output) return residual + self.dropout(output), attn class PoswiseFeedForwardNet(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(D_MODEL, D_FF) self.fc2 = nn.Linear(D_FF, D_MODEL) self.dropout = nn.Dropout(DROPOUT) self.norm = LayerNormalization(D_MODEL) def forward(self, x): output = self.fc2(self.dropout(F.relu(self.fc1(x)))) return x + self.dropout(output) class EncoderLayer(nn.Module): def __init__(self): super().__init__() self.enc_self_attn = MultiHeadAttention() self.pos_ffn = PoswiseFeedForwardNet() self.norm = LayerNormalization(D_MODEL) def forward(self, enc_inputs): attn_outputs, attn = self.enc_self_attn(enc_inputs, enc_inputs, enc_inputs) attn_outputs = self.norm(attn_outputs) enc_outputs = self.pos_ffn(attn_outputs) return enc_outputs, attn class LWM(torch.nn.Module): def __init__(self, element_length=16, d_model=64, max_len=129, n_layers=12): super().__init__() self.embedding = Embedding(element_length, d_model, max_len) self.layers = nn.ModuleList([EncoderLayer() for _ in range(n_layers)]) self.linear = nn.Linear(d_model, d_model) self.norm = LayerNormalization(d_model) embed_weight = self.embedding.proj.weight d_model, n_dim = embed_weight.size() self.decoder = nn.Linear(d_model, n_dim, bias=False) self.decoder_bias = nn.Parameter(torch.zeros(n_dim)) @classmethod def from_pretrained(cls, ckpt_name='model_weights.pth', device='cuda', use_auth_token=None): model = cls().to(device) ckpt_path = ckpt_name model.load_state_dict(torch.load(ckpt_path, map_location=device)) print(f"Model loaded successfully from {ckpt_path} to {device}") return model def forward(self, input_ids, masked_pos): output = self.embedding(input_ids) for layer in self.layers: output, _ = layer(output) masked_pos = masked_pos.long()[:, :, None].expand(-1, -1, output.size(-1)) h_masked = torch.gather(output, 1, masked_pos) h_masked = self.norm(F.relu(self.linear(h_masked))) logits_lm = self.decoder(h_masked) + self.decoder_bias return logits_lm, output